Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Development of an efficient vascular substitute by tissue engineering is strongly dependent on endothelial cell viability. The aim of this study was to evaluate cell viability of transdifferentiated endothelial-like cells (Tr-ELC) by using for the first time electron probe X-ray microanalysis (EPXMA), not only to accurately analyze cell viability by quantifying the intracellular ionic concentrations, but also to establish their possible use in vascular tissue engineering protocols. Human umbilical cord Wharton's jelly stem cells (HWJSC) and endothelial cells from the human umbilical vein (HUVEC) were isolated and cultured. Transdifferentiation from HWJSC to the endothelial phenotype was induced. EPXMA was carried out to analyze HUVEC, HWJSC and Tr-ELC cells by using a scanning electron microscope equipped with an EDAX DX-4 microanalytical system and a solid-state backscattered electron detector. To determine total ion content, the peak-to-local-background (P/B) ratio method was used with reference to standards composed of dextran containing known amounts of inorganic salts. Our results revealed a high K/Na ratio in Tr-ELC (9.41), in association with the maintenance of the intracellular levels of chlorine, phosphorous and magnesium and an increase of calcium (p=0.031) and sulfur (p=0.022) as compared to HWJSC. Calcium levels were similar for HUVEC and Tr-ELC. These results ensure that transdifferentiated cells are highly viable and resemble the phenotypic and microanalytical profile of endothelial cells. Tr-ELC induced from HWJSC may fulfill the requirements for use in tissue engineering protocols applied to the vascular system at the viability and microanalytical levels.

Download full-text PDF

Source
http://dx.doi.org/10.14670/HH-11-629DOI Listing

Publication Analysis

Top Keywords

cell viability
16
tissue engineering
16
transdifferentiated endothelial-like
8
endothelial-like cells
8
x-ray microanalysis
8
cells tr-elc
8
engineering protocols
8
human umbilical
8
hwjsc endothelial
8
endothelial cells
8

Similar Publications

Viscosity-sensitive fluorescent probes based on the hemicyanine for the organelle-specific visualization during autophagy and ferroptosis.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address: g

The dynamic monitoring of cell death processes remains a significant challenge due to the scarcity of highly sensitive molecular tools. In this study, two hemicyanine-based probes (5a-5b) with D-π-A structures were developed for organelle-specific viscosity monitoring. Both probes exhibited correlation with the Förster-Hoffmann viscosity-dependent relationship (R > 0.

View Article and Find Full Text PDF

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF

Background: Glucocorticoids remain the primary treatment for acute lymphoblastic leukemia (ALL) in children. However, glucocorticoid-resistant ALL exhibits increased mortality rates. To overcome resistance and improve management strategies, alternative therapeutic agents are required.

View Article and Find Full Text PDF

Transcutaneous devices such as dental implants frequently fail due to infections at their interfaces with epithelial tissues. These infections are facilitated by the lack of integration between the devices and the surrounding soft tissues. This study aims to improve epithelial integration through surface modification of a transcutaneous implant material (polyetheretherketone (PEEK)).

View Article and Find Full Text PDF

20(R)-ginsenoside Rg3 Inhibits Neuroinflammation Induced by Cerebral Ischemia/Reperfusion Injury by Regulating the Toll-Like Receptor 4/Myeloid Differentiation Factor-88/Nuclear Factor Kappa B Signaling Pathway.

Chem Biodivers

September 2025

School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.

20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.

View Article and Find Full Text PDF