Highly Stable, Protein-Resistant Surfaces via the Layer-by-Layer Assembly of Poly(sulfobetaine methacrylate) and Tannic Acid.

Langmuir

†Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Joint Laboratory for Adsorption and Separation Materials, Department of Polymer Science and Engineering, and ‡Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic

Published: June 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zwitterionic materials have received great attention because of the non-fouling property. As a result of the electric neutrality of zwitterionic polymers, their layer-by-layer (LBL) assembly is generally conducted under specific conditions, such as very low pH values or ionic strength. The formed multilayers are unstable at high pH or in a high ionic strength environment. Therefore, the formation of highly stable multilayers of zwitterionic polymers via the LBL assembly process is still challenging. Here, we report the LBL assembly of poly(sulfobetaine methacrylate) (PSBMA) with a polyphenol, tannic acid (TA), for protein-resistant surfaces. The assembly process was monitored by a quartz crystal microbalance (QCM) and variable-angle spectroscopic ellipsometry (VASE), which confirms the formation of thin multilayer films. We found that the (TA/PSBMA)n multilayers are stable over a wide pH range of 4-10 and in saline, such as 1 M NaCl or urea solution. The surface morphology and chemical composition were characterized by specular reflectance Fourier transform infrared spectroscopy (FTIR/SR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Furthermore, (TA/PSBMA)n multilayers show high hydrophilicity, with a water contact angle lower than 15°. A QCM was used to record the dynamic protein adsorption process. Adsorption amounts of bovine serum albumin (BSA), lysozyme (Lys), and hemoglobin (Hgb) on (TA/PSBMA)20 multilayers decreased to 0.42, 52.9, and 37.9 ng/cm(2) from 328, 357, and 509 ng/cm(2) on a bare gold chip surface, respectively. In addition, the protein-resistance property depends upon the outmost layer. This work provides new insights into the LBL assembly of zwitterionic polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b00920DOI Listing

Publication Analysis

Top Keywords

lbl assembly
16
zwitterionic polymers
12
highly stable
8
protein-resistant surfaces
8
assembly polysulfobetaine
8
polysulfobetaine methacrylate
8
tannic acid
8
ionic strength
8
assembly process
8
ta/psbman multilayers
8

Similar Publications

Laser Powder Bed Fusion (LPBF) WE43 Magnesium Scaffold with EGCG/PDA-Functionalized Silk Fibroin Membrane for Antibacterial Osteoinductive Guided Bone Regeneration.

ACS Appl Mater Interfaces

September 2025

Department of Pediatric Dentistry (Department of Preventive Dentistry), School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China.

Guided bone regeneration (GBR) is a prominent focus in biomedical materials research, yet few studies address practical clinical needs. GBR membranes must fulfill the "PASS" principles to be effective in surgery, but existing membranes often fall short in balancing antibacterial activity, controlled degradation, osteoinductive potential, and mechanical support. In this study, we employed laser powder bed fusion (LPBF) to fabricate a porous WE43 magnesium alloy scaffold suitable for large alveolar bone defects.

View Article and Find Full Text PDF

Graphene Oxide-Functionalized Optical Sensor for Label-Free Detection of Breast Cancer Cells.

ACS Appl Nano Mater

August 2025

Department of Physics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.

Accurate and noninvasive detection of cancer cells is critical for advancing early stage cancer diagnostics and monitoring tumor progression. While manual enumeration methods, such as hemocytometry, remain in use, they suffer from limited sensitivity and scalability. In this article, we report the first feasibility study demonstrating a graphene oxide (GO)-functionalized long-period fiber grating (LPG) sensor for the label-free detection of MCF-7 human breast cancer cell density via secreted cellular byproducts.

View Article and Find Full Text PDF

β-Adrenergic agonists are employed in the livestock industry to promote the growth of poultry and livestock. However, due to the frequent lack of scientific guidance in medication administration among farmers, issues such as indiscriminate use, misuse, and noncompliance with withdrawal periods have arisen. These practices result in drug residues, triggering food safety concerns and posing a threat to consumer health.

View Article and Find Full Text PDF

Small-cell lung cancers (SCLCs) contain near-universal loss-of-function mutations in RB1 and TP53, compromising the G1-S checkpoint and leading to dysregulated E2F activity. Other cancers similarly disrupt the G1-S checkpoint through loss of CDKN2A or amplification of cyclin D or cyclin E, also resulting in excessive E2F activity. Although E2F activation is essential for cell cycle progression, hyperactivation promotes apoptosis, presenting a therapeutic vulnerability.

View Article and Find Full Text PDF

Quantum dot composite colloids (QDCCs), submicron-sized colloidal particles incorporating multiple QDs, have been employed as signal reporters. Multiple QDs were encapsulated within the hydrophobic pockets of amphiphilic polyethylenimine derivative (amPEI), forming amPEI-QDCCs with a hydrodynamic size of approximately 100 nm. Fluorescence (FL) correlation spectroscopy revealed that each QDCC encapsulates an average of 20 QDs.

View Article and Find Full Text PDF