Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma.

Nat Commun

1] Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, USA [2] Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA [3] Department of Radiology, Massachusetts General Hospital, Fruit St, Boston, Massachusetts

Published: May 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Real-time monitoring of drug efficacy in glioblastoma multiforme (GBM) is a major clinical problem as serial re-biopsy of primary tumours is often not a clinical option. MGMT (O(6)-methylguanine DNA methyltransferase) and APNG (alkylpurine-DNA-N-glycosylase) are key enzymes capable of repairing temozolomide-induced DNA damages and their levels in tissue are inversely related to treatment efficacy. Yet, serial clinical analysis remains difficult, and, when done, primarily relies on promoter methylation studies of tumour biopsy material at the time of initial surgery. Here we present a microfluidic chip to analyse mRNA levels of MGMT and APNG in enriched tumour exosomes obtained from blood. We show that exosomal mRNA levels of these enzymes correlate well with levels found in parental cells and that levels change considerably during treatment of seven patients. We propose that if validated on a larger cohort of patients, the method may be used to predict drug response in GBM patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430127PMC
http://dx.doi.org/10.1038/ncomms7999DOI Listing

Publication Analysis

Top Keywords

exosomal mrna
8
mrna levels
8
levels
5
chip-based analysis
4
analysis exosomal
4
mrna mediating
4
mediating drug
4
drug resistance
4
resistance glioblastoma
4
glioblastoma real-time
4

Similar Publications

Exosomes derived from various cells have been demonstrated to contribute to cardiac repair by regulating macrophage polarization in myocardial infarction. However, how exosomes secreted from cardiomyocytes under hypoxia-ischemia (Hypo-Exo) regulate macrophage polarization in the local tissues is elusive. This study aimed to determine the underlying mechanisms by which Hypo-Exo polarized M2 macrophages.

View Article and Find Full Text PDF

The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.

View Article and Find Full Text PDF

Objectives: To investigate the effect of cardiomyocytes-derived exosomes on lipopolysaccharide (LPS)-induced cardiomyocyte injury and its mechanism.

Methods: Exosomes isolated from rat cardiomyocytes with or without LPS treatment were co-cultured with rat lymphocytes. The lymphocytes with or without exosome treatment were co-cultured with LPS-induced rat cardiomyocytes for 48 h.

View Article and Find Full Text PDF

Familial hypertriglyceridemia (FHTG), a severe subtype of primary hypertriglyceridemia caused by mutations in and other related genes, is linked to life-threatening cardiovascular complications. Current therapies inadequately address the underlying genetic pathology. Here, we developed a novel exosome-based mRNA delivery platform to restore functional glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 () expression, providing a targeted therapeutic strategy for FHTG.

View Article and Find Full Text PDF

Exosomes in obstructive sleep apnea-related diseases.

Chin Med J (Engl)

September 2025

Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.

Obstructive sleep apnea (OSA) is a global public health concern characterized by repeated upper airway collapse during sleep. Research indicates that OSA is a risk factor for the development of various diseases, including cardiovascular disease, metabolic disorders, respiratory diseases, neurodegenerative diseases, and cancer. Exosomes, extracellular vesicles released by most cell types, play a key role in intercellular communication by transporting their contents-such as microRNA, messenger RNA, DNA, proteins, and lipids-to target cells.

View Article and Find Full Text PDF