98%
921
2 minutes
20
Leaf senescence, the final stage of leaf development, is regulated tightly by endogenous and environmental signals. MYBS3, a MYB transcription factor with a single DNA-binding domain, mediates sugar signaling in rice. Here we report that an Arabidopsis MYBS3 homolog, MYBH, plays a critical role in developmentally regulated and dark-induced leaf senescence by repressing transcription. Expression of MYBH was enhanced in older and dark-treated leaves. Gain- and loss-of-function analysis indicated that MYBH was involved in the onset of leaf senescence. Plants constitutively overexpressing MYBH underwent premature leaf senescence and showed enhanced expression of leaf senescence marker genes. In contrast, the MYBH mutant line, mybh-1, exhibited a delayed-senescence phenotype. The EAR repression domain was required for MYBH-regulated leaf senescence. Overexpression and knockout of MYBH repressed and enhanced auxin-responsive gene expression, respectively. MYBH repressed the auxin-amido synthase genes DFL1/GH3.6 and DFL2/GH3.10, which regulate auxin homoeostasis, by binding directly to the TA box in each of their regulatory regions. An auxin-responsive phenotype was enhanced in MYBH overexpression lines and reduced in mybh knockout lines. Overexpression of MYBH enhanced gene expression of SAUR36, an auxin-promoted leaf senescence key regulator, and accelerated ABA- and ethylene-induced leaf senescence in transgenic Arabidopsis plants. Our results suggest that the role of MYBH in controlling auxin homeostasis accounts for its capacity to participate in regulation of age- and darkness-induced leaf senescence in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-015-0321-2 | DOI Listing |
Fungal Biol
October 2025
Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) - CONICET, Camino La Carrindanga Km 7, Bahía Blanca, 8000, Argentina.
Tritrophic interactions involving host plants, fungal pathogens and mycoparasites play an important role in the dynamics of natural ecosystems. In this work, we investigate the impact of the rust fungus Puccinia araujiae on the growth of Araujia hortorum plants in the presence/absence of a mycoparasitic Cladosporium species identified here as Cladosporium sphaerospermum, supported by both morphological and molecular studies. The capacity of the latter to grow and reproduce at the expense of teliospores of the rust was confirmed through microscopic observations.
View Article and Find Full Text PDFNew Phytol
September 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Biology (Basel)
July 2025
College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower () is a highly photosynthetic plant; here, a -homologues gene was identified from the sunflower genome by bioinformatics. To analyze the bio-function of , transgenic rice plants overexpressing () were constructed and characterized via phenotype.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Geographical Sciences, Faculty of Geographic Science and Engineering, Henan University, Zhengzhou, China.
Introduction: Phenology is a sensitive biological indicator of climate change. Increasing nitrogen (N) deposition has amplified phenological shifts, making their study across terrestrial ecosystems crucial for understanding global change responses. While existing research focuses on single ecosystems, comparative analyses are lacking.
View Article and Find Full Text PDFPlant Cell Physiol
September 2025
Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
Various aspects of Japanese morning glory (Ipomoea nil) petals, such as color, pattern, shape, flower opening time, and senescence, have been extensively studied. To facilitate such studies, transcriptome data were collected from flower petals at 3-h intervals over 3.5 days; the data was collected 72 h before and 12 h post-flower opening, accounting for 29 timepoints.
View Article and Find Full Text PDF