Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal × Seemann, G. mustelinum Miers × Watt, G. armourianum Kearny, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing a total of 22,829 SNPs were generated for two F2 mapping populations, one intraspecific and one interspecific, and 3,533 SNP markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26 linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array, cluster file and associated marker sequences constitute a major new resource for the global cotton research community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478548PMC
http://dx.doi.org/10.1534/g3.115.018416DOI Listing

Publication Analysis

Top Keywords

snp markers
12
intraspecific interspecific
8
high-density genetic
8
cotton species
8
array
5
cotton
5
development 63k
4
snp
4
63k snp
4
snp array
4

Similar Publications

Epinephelus tukula is an economically important aquaculture animal, and a major parent in grouper crossbreeding. To better preserve and exploit E. tukula germplasm resources, a core collection (containing 34 individuals derived from 10 genetic groups) was first constructed based on phenotypic growth traits and whole-genome resequencing (WGS) data.

View Article and Find Full Text PDF

Background And Aim: The () gene plays a pivotal role in regulating growth, metabolism, and fat deposition in cattle. Genetic polymorphisms in this gene can influence phenotypic traits and may serve as molecular markers for selection in breeding programs. However, comprehensive characterization of gene variants in local Indonesian breeds, such as Madura cattle, remains limited.

View Article and Find Full Text PDF

Low-coverage sequencing refers to sequencing DNA of individuals to a low depth of coverage (e.g., 0.

View Article and Find Full Text PDF

Bacterial leaf streak (BLS), caused by pv. (), has recently emerged as a significant threat to wheat production in the Northern Great Plains region of the US. Deploying resistant cultivars is an economical and practical method of controlling BLS.

View Article and Find Full Text PDF

Introduction: Identifying genetic markers associated with economically important traits in dairy goats helps enhance breeding efficiency, thereby increasing industry value. However, the potential genetic structure of key economic traits in dairy goats is still largely unknown.

Methods: This study used three genome-wide association study (GWAS) models (GLM, MLM, FarmCPU) to analyze dairy goat milk production traits (milk yield, fat percentage, protein percentage, lactose percentage, ash percentage, total dry matter, and somatic cell count).

View Article and Find Full Text PDF