Mass spectrometric based approaches in urine metabolomics and biomarker discovery.

Mass Spectrom Rev

College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada.

Published: March 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Urine metabolomics has recently emerged as a prominent field for the discovery of non-invasive biomarkers that can detect subtle metabolic discrepancies in response to a specific disease or therapeutic intervention. Urine, compared to other biofluids, is characterized by its ease of collection, richness in metabolites and its ability to reflect imbalances of all biochemical pathways within the body. Following urine collection for metabolomic analysis, samples must be immediately frozen to quench any biogenic and/or non-biogenic chemical reactions. According to the aim of the experiment; sample preparation can vary from simple procedures such as filtration to more specific extraction protocols such as liquid-liquid extraction. Due to the lack of comprehensive studies on urine metabolome stability, higher storage temperatures (i.e. 4°C) and repetitive freeze-thaw cycles should be avoided. To date, among all analytical techniques, mass spectrometry (MS) provides the best sensitivity, selectivity and identification capabilities to analyze the majority of the metabolite composition in the urine. Combined with the qualitative and quantitative capabilities of MS, and due to the continuous improvements in its related technologies (i.e. ultra high-performance liquid chromatography [UPLC] and hydrophilic interaction liquid chromatography [HILIC]), liquid chromatography (LC)-MS is unequivocally the most utilized and the most informative analytical tool employed in urine metabolomics. Furthermore, differential isotope tagging techniques has provided a solution to ion suppression from urine matrix thus allowing for quantitative analysis. In addition to LC-MS, other MS-based technologies have been utilized in urine metabolomics. These include direct injection (infusion)-MS, capillary electrophoresis-MS and gas chromatography-MS. In this article, the current progresses of different MS-based techniques in exploring the urine metabolome as well as the recent findings in providing potentially diagnostic urinary biomarkers are discussed. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:115-134, 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mas.21455DOI Listing

Publication Analysis

Top Keywords

urine metabolomics
16
liquid chromatography
12
urine
10
urine metabolome
8
mass spectrometric
4
spectrometric based
4
based approaches
4
approaches urine
4
metabolomics
4
metabolomics biomarker
4

Similar Publications

Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.

View Article and Find Full Text PDF

Introduction: Knockout of the Fmo5 gene in mice led to a lean, slow-ageing phenotype characterised by the presence of 2,3-butanediol isomers in their urine and plasma. Oral treatment of wildtype mice with 2,3-butanediol led to a low cholesterol, low epididymal fat phenotype.

Objectives: Determine if significant, heterozygous coding variations in human FMO5 would give rise to similar clinical and metabolic phenotypes in humans, as in C57BL/6J mice with knockout of the Fmo5 gene and in particular, increased excretion of 2,3-butanediol.

View Article and Find Full Text PDF

Gut dysbiosis and an increased risk of respiratory infection in type 2 diabetes have been well recognised. However, the relationship between the gut and respiratory pathobionts carriage rate in the Type 2 diabetic Malaysian population is understudied. To address the knowledge gap, we profiled the gut and upper respiratory tract microbial composition, as well as the urine metabolome of 31 type 2 diabetic adults and 14 non-diabetes adults.

View Article and Find Full Text PDF

Background: Diabetic nephropathy (DN), a serious diabetic complication, currently has limited treatment options. Yulan Jiangtang capsules (YL) are a clinically approved traditional Chinese medicine formula for glycemic control and diabetes-related complications. Nevertheless, the underlying mechanisms of their therapeutic effects remain incompletely elucidated.

View Article and Find Full Text PDF

Diagnosing pulmonary tuberculosis (PTB) remains challenging, particularly in people living with HIV (PLWH) who have a high rate of false-negative tests using expectorated sputum. Urine, a non-invasive sample, offers a valuable source of metabolites reflecting systemic changes in disease. This study utilized liquid chromatography-mass spectrometry to investigate urinary biomarkers previously identified in other cohorts, using a well-characterized population of people newly-diagnosed with HIV who screened positive for TB symptoms in Port-au-Prince, Haiti.

View Article and Find Full Text PDF