A multi-responsive water-driven actuator with instant and powerful performance for versatile applications.

Sci Rep

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620 (People's Republic of China).

Published: March 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mechanical actuators driven by water that respond to multiple stimuli, exhibit fast responses and large deformations, and generate high stress have potential in artificial muscles, motors, and generators. Meeting all these requirements in a single device remains a challenge. We report a graphene monolayer paper that undergoes reversible deformation. Its graphene oxide cells wrinkle and extend in response to water desorption and absorption, respectively. Its fast (~0.3 s), powerful (>100 MPa output stress, 7.5 × 10(5) N kg(-1) unit mass force), and controllable actuation can be triggered by moisture, heat, and light. The graphene monolayer paper has potential in artificial muscles, robotic hands, and electromagnetic-free generators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379955PMC
http://dx.doi.org/10.1038/srep09503DOI Listing

Publication Analysis

Top Keywords

potential artificial
8
artificial muscles
8
graphene monolayer
8
monolayer paper
8
multi-responsive water-driven
4
water-driven actuator
4
actuator instant
4
instant powerful
4
powerful performance
4
performance versatile
4

Similar Publications

The purpose of this study was to investigate the efficacy and safety of add-on metformin treatment in persons with active epilepsy (a-PWE). This is a single-centric, double-blind, placebo-controlled trial randomised a-PWE (1:1) to receive either metformin (extended-release 500 mg) or matching placebo for 6 months along with background antiseizure medications. Primary outcome was percentage change in seizure frequency/month, and secondary outcomes were 50% responder rate, serum mTOR expression, and serum total antioxidant capacity (TAC), body composition analysis, quality of life (QOL), and safety assessment.

View Article and Find Full Text PDF

Objective: To identify the key features of facial and tongue images associated with anemia in female populations, establish anemia risk-screening models, and evaluate their performance.

Methods: A total of 533 female participants (anemic and healthy) were recruited from Shuguang Hospital. Facial and tongue images were collected using the TFDA-1 tongue and face diagnosis instrument.

View Article and Find Full Text PDF

Chemically Lithiated Poly(vinylidene difluoride) with In Situ Generated LiF Nanofiller as Hybrid Artificial Layer for Stable Lithium Metal Anodes.

Small

September 2025

Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer  poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.

View Article and Find Full Text PDF

Optically Controlled Memristor Enabling Synergistic Sensing-Memory-Computing for Neuromorphic Vision Systems.

Adv Mater

September 2025

Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, 071002, China.

Neuromorphic Visual Devices hold considerable promise for integration into neuromorphic vision systems that combine sensing, memory, and computing. This potential arises from their synergistic benefits in optical signal detection and neuro-inspired computational processes. However, current devices face challenges such as insufficient light/dark resistance ratios, mismatched transient photo-response, and volatile retention characteristics, limiting their adaptability to complex artificial vision systems.

View Article and Find Full Text PDF