Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dendritic cells (DCs) are the primary leukocytes responsible for priming T cells. To find and activate naïve T cells, DCs must migrate to lymph nodes, yet the cellular programs responsible for this key step remain unclear. DC migration to lymph nodes and the subsequent T-cell response are disrupted in a mouse we recently described lacking the NOD-like receptor NLRP10 (NLR family, pyrin domain containing 10); however, the mechanism by which this pattern recognition receptor governs DC migration remained unknown. Using a proteomic approach, we discovered that DCs from Nlrp10 knockout mice lack the guanine nucleotide exchange factor DOCK8 (dedicator of cytokinesis 8), which regulates cytoskeleton dynamics in multiple leukocyte populations; in humans, loss-of-function mutations in Dock8 result in severe immunodeficiency. Surprisingly, Nlrp10 knockout mice crossed to other backgrounds had normal DOCK8 expression. This suggested that the original Nlrp10 knockout strain harbored an unexpected mutation in Dock8, which was confirmed using whole-exome sequencing. Consistent with our original report, NLRP3 inflammasome activation remained unaltered in NLRP10-deficient DCs even after restoring DOCK8 function; however, these DCs recovered the ability to migrate. Isolated loss of DOCK8 via targeted deletion confirmed its absolute requirement for DC migration. Because mutations in Dock genes have been discovered in other mouse lines, we analyzed the diversity of Dock8 across different murine strains and found that C3H/HeJ mice also harbor a Dock8 mutation that partially impairs DC migration. We conclude that DOCK8 is an important regulator of DC migration during an immune response and is prone to mutations that disrupt its crucial function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364188PMC
http://dx.doi.org/10.1073/pnas.1501554112DOI Listing

Publication Analysis

Top Keywords

nlrp10 knockout
12
dock8
10
loss dock8
8
dock8 function
8
c3h/hej mice
8
cells dcs
8
lymph nodes
8
knockout mice
8
migration
6
dcs
5

Similar Publications

Manganese (Mn) is an essential micronutrient required for various biological processes but excess exposure to Mn can cause neurotoxicity. However, there are few reports regarding the toxicity effect of Mn on the kidney as well as the underlying molecule mechanism. Herein, in vivo experiments were adopted to assess the toxicity effects associated with Mn, and found that chronic Mn treatment induced the injury of glomerular podocytes but not renal tubule in rats.

View Article and Find Full Text PDF

The gene encodes the α-subunit of high-conductance calcium- and voltage-dependent K (BK) potassium channel. With the development of generation gene sequencing technology, many KCNMA1 mutants have been identified and are more closely related to generalized epilepsy and paroxysmal dyskinesia. Here, we performed a genetic screen of 26 patients with febrile seizures and identified a novel mutation of KCNMA1 (E155Q).

View Article and Find Full Text PDF

Ischemic stroke leads to neuronal cell death and induces a cascade of inflammatory signals that results in secondary brain damage. Although constant efforts to develop therapeutic strategies and to reveal the molecular mechanism resulting in the physiopathology of this disease, much still remains unclear. Membrane-bound Toll-like receptors (TLRs) and cytosolic nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) are two major families of pattern recognition receptors that initiate pro-inflammatory signaling pathways.

View Article and Find Full Text PDF

Characterization of Innate and Adaptive Immune Responses in PYNOD-Deficient Mice.

Immunohorizons

April 2018

Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan;

PYNOD (also called NLRP10) is a member of the nucleotide-binding domain and leucine-rich repeat containing family. Many members of this family play important roles in the activation and/or regulation of immune and inflammatory responses. We previously showed that PYNOD inhibits the IL-1β secretion in response to microbial infection in PYNOD-transgenic mice.

View Article and Find Full Text PDF

NOD-like receptors (NLR) are critical regulators of innate immune signaling. The NLR family consists of 22 human proteins with a conserved structure containing a central oligomerization NACHT domain, an N-terminal interaction domain, and a variable number of C-terminal leucine-rich repeats. Most NLR proteins function as cytosolic pattern recognition receptors with activation of downstream inflammasome signaling, NF-κB, or MAPK activation.

View Article and Find Full Text PDF