Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334672PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117526PLOS

Publication Analysis

Top Keywords

human colon
12
colon carcinoma
12
carcinoma cells
12
curcumin
8
curcumin conjugated
8
conjugated plga
8
potentiates sustainability
8
sustainability anti-proliferative
8
biological activities
8
inhibits cell
8

Similar Publications

Enantioselective Synthesis of Spirooxindole Derivatives through Lewis Acid-Catalyzed Michael Addition/Cyclization Cascade.

J Org Chem

September 2025

Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. of China.

A Mg(OTf)-catalyzed asymmetric Michael addition/cyclization cascade reaction between 3-isothiocyanato oxindoles and 2-arylidene-1,3-indanediones has been developed. This transformation provides an efficient and concise approach to biologically important bispiro[indanedione-oxindole-pyrrolidinyl]s under mild conditions in good to excellent yields (70-99% yields) with moderate to good stereoselectivities (up to 99% and >95:5 d.r.

View Article and Find Full Text PDF

Objectives: To investigate the therapeutic mechanism of 2,6-dimethoxy-1,4-benzoquinone (DMQ) for alleviating dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice.

Methods: Eighteen male C57BL/6J mice were equally randomized into control group, DSS group and DMQ treatment group. In DSS and DMQ groups, the mice were treated with DSS in drinking water to induce UC, and received intraperitoneal injections of sterile PBS or DMQ (20 mg/kg) during modeling.

View Article and Find Full Text PDF

Objectives: To balance the extended functional urinary voiding and morbidity outcomes amid Ileal W and Y-shaped contrasted to spherical ileocoecal (IC) orthotopic bladders subsequent prostate-sparing radical cystectomy (PRC) versus standard radical cystoprostatectomy (RC).

Material And Methods: Two hundred eight male bladder cancer patients were grouped into 98 RC followed by 43-W, 31-Y, and 23-IC in comparison to 110 PRC followed by 35-W, 37-Y, and 38-IC. The functional voiding outcomes were determined by detailed patients' interview and urodynamic studies (UDS).

View Article and Find Full Text PDF

LDH-chitosan bionanocomposites for oncologic applications: A refreshing perspective on the mutual influence through intermolecular forces toward controlled morphology and dispersion.

Int J Biol Macromol

September 2025

Nanotechnology Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483, Iași, Romania; Faculty of Chemistry, Al. I. Cuza University, 11- Carol I Bvd., 700506, Iasi, Romania. Electronic address:

This contribution discusses the design of bionanocomposites based on chitosan and MgAl layered double hydroxides (LDH) for cancer therapy. Compared to other studies, our approach was to pre-adsorb the metal chloride precursors of LDH on chitosan while the solution of metal precursors with and without H provided the acidic environment for polymer dissolution. The structure, morphology and chemical composition of the bionanocomposites were characterized by XRD, FTIR, TG, etc.

View Article and Find Full Text PDF

Ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD), is characterized by disruption of intestinal barrier function and complex inflammatory manifestations locally and systemically. Although anti-tumor necrosis factor-α (TNF-α) agents such as Infliximab (IFX) are effective in treating IBD, their intestinal tissue concentration has been regarded as determinant of therapeutic efficacy while was restrained by the large molecular weight. Considering the enhanced expression of human neonatal Fc receptor (hFcRn) in UC tissues, we attempted to deliver the therapeutic entity of IFX into UC tissues by developing a novel dual-acting IFX Fab-F8 (IFX-F8) fusion protein for UC treatment.

View Article and Find Full Text PDF