98%
921
2 minutes
20
Drug induced phospholipidosis (PLD) is an adverse side effect which can affect registration of new drug entities. Phospholipids can accumulate in lysosomes, organelles essential in cellular biogenesis and if compromised can lead to cellular toxicity. Drug accumulation in lysosomes (lysosomotropism) is a known mechanism leading to PLD, however phospholipidosis can also occur indirectly by altering synthesis and processing of phospholipids. Drug induced PLD can be measured in vitro using High Content Screening (HCS) approaches, by either determining accumulation of phospholipids conjugated to dyes in cells or by determining accumulation of drugs within lysosomes, by competitive loss of lysosomal dye uptake. In this study we validate two in vitro assays using HepG2 and H9c2 cells in conjunction with in silico models based on physico-chemical properties using 56 compounds (28 phospholipidogenic, 25 non-phospholipidogenic and three kidney specific). Using HCS to determine PLD and lysosomal trapping in HepG2 cells in combination with in silico modelling increase the overall prediction of PLD in vivo with a sensitivity of 96%, specificity of 92% and overall accuracy of 94%. The findings of this study demonstrate the applicability of in vitro and in silico approaches to understand the mechanism underlying PLD and the utility of these approaches as a screening strategy in the pharmaceutical industry to select drug candidates with a low in vivo PLD liability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2015.01.014 | DOI Listing |
Helicobacter
September 2025
Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: Several clinical studies have demonstrated that Helicobacter pylori (Hp) infection may exacerbate the progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD); however, the underlying mechanisms remain unclear. This study aims to investigate the characterization of the gastric microbiome and metabolome in relation to the progression of MASLD induced by Hp infection.
Methods: We established a high-fat diet (HFD) obese mouse model, both with and without Hp infection, to compare alterations in serum and liver metabolic phenotypes.
J Dent Educ
September 2025
Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
Background: Virtual reality (VR) and artificial intelligence (AI) technologies have advanced significantly over the past few decades, expanding into various fields, including dental education.
Purpose: To comprehensively review the application of VR and AI technologies in dentistry training, focusing on their impact on cognitive load management and skill enhancement. This study systematically summarizes the existing literature by means of a scoping review to explore the effects of the application of these technologies and to explore future directions.
Reprod Health
September 2025
Department of Sexual and Reproductive Health including UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction, World Health Organization, Avenue Appia 20, 1211, Geneva, Switzerland.
Background: The COVID-19 pandemic disrupted the provision of sexual and reproductive health services, including contraceptive and family planning (FP) services. The World Health Organization conducted a multi-country study in India, Nigeria and Tanzania to assess the impact of the pandemic on the health system's capacity to provide contraceptive and FP services. In this paper, we share the results of a qualitative study aimed at understanding clients' perspectives at the primary healthcare level on accessing contraceptive services in COVID-19-affected areas in the three aforementioned countries.
View Article and Find Full Text PDFPlanta
September 2025
Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea.
The regulation of photoperiod and light intensity significantly affected Agastache rugosa by enhancing growth, modifying flowering dynamics, and promoting the accumulation of key phenolic compounds. Agastache rugosa is a medicinal and aromatic plant valued for its bioactive compounds, which contribute to its application in the flavoring, perfume, and food industries. However, variability in the composition of the bioactive compounds poses challenges for its commercial utilization.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, PR China. Electronic address: wj
Difenoconazole (DFC) is a commonly used triazole fungicide known for its high efficiency and environmental persistence. A thorough understanding of its environmental behavior, particularly sorption in soil, is critical to obtain a comprehensive assessment of the ecological risk of DFC. In this study, three soils with distinct physicochemical properties (brown soil, cinnamon soil, and fluvo-aquic soil) were used to elucidate the adsorption mechanisms of DFC on soil.
View Article and Find Full Text PDF