Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: New multiple sclerosis (MS) lesion activity on magnetic resonance imaging (MRI) can test immunomodulatory therapies in proof-of-concept trials. Comparably powerful endpoints to assess tissue protection or repair are lacking.

Objective: The objective of this paper is to report sample-size calculations for assessment of new lesion recovery.

Methods: In two sets of six active MS cases, new lesions were observed by monthly MRI for approximately 12 months. Averages and quartiles of normalized (proton density/T1/T2 weighted) and quantitative (T1/T2 and mean diffusivity maps for dataset 1, T2 and magnetization transfer ratio maps for dataset 2) measures were used to compare the lesion area before lesion appearance to afterward. A linear mixed-effects model incorporating lesion- and participant-specific random effects estimated average levels and variance components for sample-size calculations.

Results: In both datasets, greatest statistical sensitivity was observed for the 25th percentile of normalized proton density-weighted signal. At 3T, using new lesions ⩾15 mm(3), as few as nine participants/arm may be required for a six-month placebo-controlled add-on trial postulating a therapeutic effect size of 20% and statistical power of 90%.

Conclusion: Lesion recovery is a powerful outcome measure for proof-of-concept clinical trials of tissue protection and repair in MS. The trial design requires active cases and is therefore best implemented near disease onset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527958PMC
http://dx.doi.org/10.1177/1352458515569098DOI Listing

Publication Analysis

Top Keywords

tissue protection
12
protection repair
12
sample-size calculations
8
multiple sclerosis
8
active cases
8
normalized proton
8
maps dataset
8
lesion
5
calculations short-term
4
short-term proof-of-concept
4

Similar Publications

Objective: .Aim: To investigate the pathomorphological changes in the terminal chorionic villi during COVID-19 in pregnant women.

Patients And Methods: Materials and Methods: A total of 123 placentas were studied in cases of live term births (groups І) and antenatal asphyxia (groups ІІ).

View Article and Find Full Text PDF

Objective: Aim: To evaluate the state of oxidation processes and morphological changes in the heart of rats with chronic hypodynamia during the development of epinephrine heart damage (EHD)..

Patients And Methods: Materials and Methods: The study was performed on 144 white male Wistar rats.

View Article and Find Full Text PDF

Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.

View Article and Find Full Text PDF

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF

Objective: Adipose-derived regenerative cells (ADRCs) are promising cell sources for damaged tissue regeneration. The efficacy of therapeutic angiogenesis with ADRC implantation in patients with critical limb ischemia has been demonstrated in clinical studies. There are several possible mechanisms in this process such as cytokines and microRNA.

View Article and Find Full Text PDF