Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The production capacity and yield of neodymium (Nd) in China have ranked the first in the world. Because of its unique biophysical and biochemical properties, Nd compounds have entered into the agricultural environment greatly to promote plant growth. Mitochondria play a crucial role in respiration and metabolism during the growth of plants. However, little is known about the mechanism by which Nd act at the mitochondrial level in plant cells. In this study, rice mitochondrial swelling, collapsed transmembrane potential and decreased membrane fluidity were examined to be important factors for mitochondria permeability transition pore (mPTP) opening induced by Nd(III). The protection of cyclosporin A (CsA) and dithiothreitol (DTT) could confirm that Nd(III) could trigger mPTP opening. Additionally, mitochondrial membrane breakdown observed by TEM and the release of cytochrome c (Cyt c) could also elucidate the mPTP opening from another point of view. At last, the study showed that Nd(III) could restrain the mitochondrial membrane lipid peroxide, so it might interact with anionic lipid too. This detection will be conductive to the safe application of Nd compounds in agriculture and food industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381042PMC
http://dx.doi.org/10.1007/s00232-015-9773-1DOI Listing

Publication Analysis

Top Keywords

mptp opening
12
rice mitochondrial
8
mitochondrial membrane
8
mitochondrial
5
ndiii-induced rice
4
mitochondrial dysfunction
4
dysfunction investigated
4
investigated spectroscopic
4
spectroscopic microscopic
4
microscopic methods
4

Similar Publications

MPTP controls the release of mtDNA and induces endothelial cell PANoptosis in trichloroethylene-induced immune kidney injury.

Eur J Pharmacol

September 2025

Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China; Institute of Dermatology, Anhui Medical University, Hefei 230032, Anhui, China. Electronic

Vascular endothelial cells (ECs) damage is closely related to kidney injury. Our previous research revealed the involvement of interferon regulatory factor 1 (IRF1)-mediated PANoptosis of renal ECs in trichloroethylene (TCE)-induced immune kidney injury. However, how IRF1 regulates ECs PANoptosis remains unclear.

View Article and Find Full Text PDF

Platelets have long been known to be critically involved in hemostasis and thrombosis. However, platelets are also recognized as metabolically active cells that require well-regulated mitochondrial function to support their multiple functions in hemostasis, thrombosis, and inflammation. Mitochondrial activity has also recently been shown to play a crucial role in determining platelet activation, survival, and pro-inflammatory potential.

View Article and Find Full Text PDF

Tumor cells typically exhibit dysregulation of mitochondrial energy metabolism and cell death. The role of mitochondrial function in ovarian cancer (OC) progression has garnered substantial attention, yet its precise molecular mechanisms remain elusive. Mitochondrial ribosomal protein L13 (MRPL13), involved in the translation of oxidative phosphorylation (OXPHOS) complex subunits, plays a critical role in regulating mitochondrial function.

View Article and Find Full Text PDF

LPS-Induced Mitochondrial Damage via SLC41A1-Mediated Magnesium Ion Efflux Leads to the Pyroptosis of Dental Stem Cells.

Adv Sci (Weinh)

August 2025

Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China.

Although regenerative endodontics demonstrate promise for dental pulp regeneration, chronic inflammation often hinders the success. This study aims to explore the mechanism whereby lipopolysaccharide (LPS) induces dental pulp regeneration failure. Transcriptomic profiling of LPS-stimulated dental pulp stem cells (DPSCs) reveals dysregulated cation homeostasis and increased magnesium (Mg⁺) transmembrane transport.

View Article and Find Full Text PDF

The intranasal delivery of exogenous mitochondria is a potential therapy for Parkinson's disease (PD). The regulatory mechanisms and effectiveness in genetic models remains uncertain, as well as the impact of modulating the mitochondrial permeability transition pore (mPTP) in grafts. Utilizing (p.

View Article and Find Full Text PDF