98%
921
2 minutes
20
Inflammatory myofibroblastic tumor is a distinctive, rarely metastasizing mesenchymal neoplasm composed of fascicles of spindle cells with a prominent inflammatory infiltrate. Roughly 50% of inflammatory myofibroblastic tumors harbor ALK receptor tyrosine kinase gene rearrangements. Such tumors are usually positive for ALK by immunohistochemistry. The molecular pathogenesis of ALK-negative inflammatory myofibroblastic tumors is largely unknown. A recent study identified rearrangements of ROS1 (another tyrosine kinase receptor) in a subset of ALK-negative inflammatory myofibroblastic tumors. Immunohistochemistry for ROS1 has been shown to correlate with ROS1 rearrangement in lung adenocarcinomas. The purpose of this study was to determine whether immunohistochemistry for ROS1 could predict ROS1 rearrangement in inflammatory myofibroblastic tumor. In total, 30 inflammatory myofibroblastic tumors were evaluated, including 21 ALK-positive tumors (10 confirmed to harbor ALK rearrangements, with TPM3, CLTC, RANPB2, and FN1 fusion partners) and 9 ALK-negative tumors (including 2 known to harbor ROS1 rearrangements). Immunohistochemistry was performed on whole tissue sections following pressure cooker antigen retrieval using a rabbit anti-ROS1 monoclonal antibody. The results were scored as 'positive' or 'negative,' and the pattern of staining was recorded. Three ALK-negative inflammatory myofibroblastic tumors (including both tumors with known ROS1 rearrangements) showed immunoreactivity for ROS1, whereas all ALK-positive inflammatory myofibroblastic tumors were negative for ROS1. One ROS1-positive inflammatory myofibroblastic tumor (with YWHAE-ROS1 fusion) showed strong, diffuse cytoplasmic and nuclear staining; one case (with TFG-ROS1 fusion) showed weak, diffuse and dot-like cytoplasmic staining; and one case (fusion partner unknown) showed moderate, diffuse and dot-like cytoplasmic staining. Expression of ROS1 correlates with ROS1 gene rearrangement in inflammatory myofibroblastic tumor. These findings suggest that immunohistochemistry for ROS1 may be useful to support the diagnosis of a subset of inflammatory myofibroblastic tumors and may select some clinically aggressive cases for targeted therapy directed against ROS1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874150 | PMC |
http://dx.doi.org/10.1038/modpathol.2014.165 | DOI Listing |
FASEB J
September 2025
Department of Plastic Surgery and Burn, Third XiangYa Hospital, Central South University, Changsha, Hunan, China.
Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.
View Article and Find Full Text PDFNat Cell Biol
September 2025
Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Orthopedics, Ningxiang Hospital of Traditional Chinese Medicine, Ningxiang, China.
Introduction: Delayed wound healing remains a significant clinical challenge under diabetic conditions, characterized by chronic inflammation and impaired angiogenesis. Traditional treatments show limited efficacy, highlighting the urgent need for innovative therapeutic approaches.
Methods: This study investigated the therapeutic potential of exosomes derived from subcutaneous adipocytes (Adipo-EVs) using a diabetic mouse model.
Front Med (Lausanne)
August 2025
Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Traditional studies of pulmonary fibrosis (PF) have focused on alveolar epithelial cells injury and abnormal myofibroblast aggregation, but recent studies have revealed that imbalances in pulmonary capillary homeostasis also play pivotal roles in this disease. The pulmonary microvasculature, composed of aerocyte capillary (aCap) and general capillary (gCap) endothelial cells, forms the core structure of the alveolar-capillary membrane. It performs key roles in gas exchange and nutrient/metabolite transport, while modulating the trafficking of inflammatory factors and immune cells and regulating alveolar damage repair.
View Article and Find Full Text PDFJ Surg Case Rep
September 2025
Department of Urology, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 6 of Qinren Road, Foshan 528000, Guangdong, People's Republic of China.
A 55-year-old female presented with left flank pain and ureteral obstruction. Imaging revealed a retroperitoneal mass suspicious for malignancy. Histopathology confirmed an inflammatory myofibroblastic tumor (IMT; anaplastic lymphoma kinase [ALK]-negative, mouse double minute 2 homolog-positive).
View Article and Find Full Text PDF