Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As soon as Peripheral Blood Mononuclear Cells (PBMC) are isolated from whole blood, some cells begin dying. The rate of apoptotic cell death is increased when PBMC are shipped, cryopreserved, or stored under suboptimal conditions. Apoptotic cells secrete cytokines that suppress inflammation while promoting phagocytosis. Increased numbers of apoptotic cells in PBMC may modulate T cell functions in antigen-triggered T cell assays. We assessed the effect of apoptotic bystander cells on a T cell ELISPOT assay by selectively inducing B cell apoptosis using α-CD20 mAbs. The presence of large numbers of apoptotic B cells did not affect T cell functionality. In contrast, when PBMC were stored under unfavorable conditions, leading to damage and apoptosis in the T cells as well as bystander cells, T cell functionality was greatly impaired. We observed that measuring the number of apoptotic cells before plating the PBMC into an ELISPOT assay did not reflect the extent of PBMC injury, but measuring apoptotic cell frequencies at the end of the assay did. Our data suggest that measuring the numbers of apoptotic cells prior to and post T cell assays may provide more stringent PBMC quality acceptance criteria than measurements done only prior to the start of the assay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381208PMC
http://dx.doi.org/10.3390/cells4010040DOI Listing

Publication Analysis

Top Keywords

apoptotic cells
20
apoptotic cell
12
numbers apoptotic
12
cell
11
cells
10
apoptotic
9
pbmc
8
pbmc quality
8
cells pbmc
8
cell assays
8

Similar Publications

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

Brucine Inhibits Gastric Cancer via Activation of Ferroptosis Through Regulating the NF-κB Signaling Pathway.

J Biochem Mol Toxicol

September 2025

Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.

Gastric cancer (GC) is the third leading cause of cancer mortality globally, often presenting with insidious symptoms that lead to late-stage diagnoses, underscoring the critical need for innovative diagnostic and therapeutic strategies. One such avenue is the exploration of ferroptosis, a regulated form of cell death implicated in various pathological conditions and malignancies. In this study, we demonstrate that brucine, an alkaloid derived from Strychnos nux-vomica, exerts significant antitumor effects on GC cells both in vitro and in vivo.

View Article and Find Full Text PDF

Extracorporeal Photopheresis Stimulates Tissue Repair after Transplantation.

Transplant Direct

September 2025

Laboratory for Transplantation Research, Department of Surgery, University Hospital Regensburg, Regensburg, Germany.

Extracorporeal photopheresis (ECP) is a safe and effective therapy with long-established indications in treating T cell-mediated immune diseases, including steroid refractory graft-versus-host disease and chronic rejection after heart or lung transplantation. The ECP procedure involves collecting autologous peripheral blood leucocytes that are driven into apoptosis before being reinfused intravenously. ECP acts primarily through in situ exposure of recipient dendritic cells and macrophages to apoptotic cells, which then suppress inflammation, promote specific regulatory T-cell responses, and retard fibrosis.

View Article and Find Full Text PDF

Extracorporeal Photopheresis: Does It Have a Potential Place Among Cell-based Therapies?

Transplant Direct

September 2025

Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria.

Extracorporeal photopheresis (ECP) is a therapeutic intervention for modulating immune responses using an autologous apoptotic cell-based product, known as a photopheresate. The process of generating photopheresates offers attractive possibilities for manipulating distinct leukocyte subsets to either augment or dampen immune responses, depending on the disease context. This review discusses current uses of ECP as a cell-based therapy and introduces possible strategies to enhance the potency of photopheresates.

View Article and Find Full Text PDF

Potential Impact of Extracorporeal Photopheresis on Trained Immunity and Organ Transplant Acceptance.

Transplant Direct

September 2025

Unidad Transplante de О́rganos, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.

Extracorporeal photopheresis (ECP) is a well-established, safe, and effective immunomodulatory therapy currently used in clinics to decrease T cell-mediated immunity in various disorders, including autoimmune diseases and chronic rejection in organ transplantation. Although the ECP procedure has been shown to induce apoptotic cells that are reintroduced into the patient at the end of the treatment, the precise tolerogenic mechanisms mediated by ECP are not fully understood. Previous in vitro studies have demonstrated that early apoptotic cells express annexins on their cell surface, which suppress myeloid cell activation on stimulation with bacterial lipopolysaccharide through Toll-like receptors.

View Article and Find Full Text PDF