The paracrine effects of adipose-derived stem cells on neovascularization and biocompatibility of a macroencapsulation device.

Acta Biomater

Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China; National Engineering Laboratory for Regenerative and Implantable Medical Devices, 12 Yu-Yan Road, Luogang Dis

Published: March 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The foreign-body response to biomaterials compromises the performance of many biomedical devices by severe fibrosis and limited neovascularization. Mesenchymal stem cells are known to secrete cytokines for treating inflammatory conditions. In this study, we aim to investigate whether the paracrine products of adipose-derived mesenchymal stem cells (ADSCs) can affect the microenvironment of biomaterials and improve tissue responses to biomaterial implants. A model system was built by loading ADSC spheroids into a macroencapsulation device composed of polytetrafluoroethylene (PTFE) filtration membranes. Soluble ADSC factors that diffused out of the device in vitro promoted the angiogenetic activity of endothelial cells and affected the secretion pattern of macrophages. In vivo study was carried out by subcutaneously embedding blank or ADSC-laden devices in rats. Following a 4 week implantation, the ADSC-laden devices were better vascularized and induced significantly less fibrotic tissue formation in comparison to the non-cellular controls. This study may facilitate our understanding of foreign-body responses and suggest new ways to improve the tissue reaction of biomedical devices for cell-based therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2014.12.025DOI Listing

Publication Analysis

Top Keywords

stem cells
12
macroencapsulation device
8
biomedical devices
8
mesenchymal stem
8
improve tissue
8
adsc-laden devices
8
paracrine effects
4
effects adipose-derived
4
adipose-derived stem
4
cells
4

Similar Publications

CRISPR/Cas9-mediated editing of COQ4 in induced pluripotent stem cells: A model for investigating COQ4-associated human coenzyme Q deficiency.

Stem Cell Res

September 2025

Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:

Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.

View Article and Find Full Text PDF

Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.

View Article and Find Full Text PDF

The journal retracts the article titled "Multipotent Stromal Cells from Subcutaneous Adipose Tissue of Normal Weight and Obese Subjects: Modulation of Their Adipogenic Differentiation by Adenosine A Receptor Ligands" [...

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.

View Article and Find Full Text PDF

Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.

View Article and Find Full Text PDF