98%
921
2 minutes
20
Background/aims: Diabetes mellitus (DM) is characterized by hyperglycemia, associated to a lack or inefficiency of the insulin to regulate glucose metabolism. DM is also marked by alterations in a diversity of cellular processes that need to be further unraveled. In this study, we examined the autophagy pathway in diabetic rat macrophages before and after treatment with insulin.
Methods: Bone marrow-derived macrophages (BMM), bronchoalveolar lavage (BAL) and splenic tissue of diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and control rats (physiological saline, i.v.). Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU, s.c.) 8 h before experiments. For characterization of the model and evaluation of the effect of insulin on the autophagic process, the following analyzes were performed: (a) concentrations of cytokines: interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-4, IL-10, cytokine-induced neutrophil chemoattractant (CINC)-1 and CINC-2 in the BAL supernatant was measured by ELISA; (b) characterization of alveolar macrophage (AM) of the BAL as surface antigens (MHCII, pan-macrophage KiM2R, CD11b) and autophagic markers (protein microtubule-associated light chain (LC)3, autophagy protein (Atg)12 by flow cytometry and confocal microscopy (c) study of macrophages differentiated from the bone marrow by flow cytometry and confocal microscopy (d) histology of the spleen by immunohistochemistry associated with confocal microscopy.
Results: Interestingly, insulin exerted antagonistic effects on macrophages from different tissues. Macrophages from bronchoalveolar lavage (BAL) enhanced their LC3 autophagosome bound content after treatment with insulin whereas splenic macrophages from red pulp in diabetic rats failed to enhance their Atg 12 levels compared to control animals. Insulin treatment in diabetic rats did not change LC3 content in bone marrow derived macrophages (BMM). M1 and M2 macrophages behaved accordingly to the host they were derived from. Diabetic M1 BMM had their LC3 vesicle-bound content diminished and M2 BMM enhanced their LC3 levels and insulin treatment failed to rescue autophagy to control levels. Insulin normalizes CINC-2 level but does not modulate autophagy markers.
Conclusion: Taking these results together, diabetic macrophages derived from different compartments show different levels of autophagy markers compared to healthy animals, therefore, they suffer distinctively in the absence of insulin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000366397 | DOI Listing |
Biosci Biotechnol Biochem
September 2025
Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka 558-8585, Japan.
Glucagon dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), yet its early hepatic effects remain unclear. Here, we demonstrate that glucagon-induced gluconeogenesis is markedly enhanced in primary hepatocytes from prediabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a well-established model of human T2DM. Compared to control LETO rats, OLETF hepatocytes showed significantly higher glucagon-stimulated expression of gluconeogenic genes (Pepck, G6pase, Fbp1) at both mRNA and protein levels, along with elevated glucose production.
View Article and Find Full Text PDFJ Ophthalmic Vis Res
September 2025
Faculty of Medicine, Padjadjaran University, Bandung, Indonesia.
Purpose: To assess the effect of empagliflozin on the expression of SGLT-2 and GLUT-1 in the chorioretina of streptozotocin-induced diabetic rats.
Methods: An experimental study was performed on Wistar rats. After a 2-week adaptation period, the rats were allocated to one of four groups.
Diabetes Obes Metab
September 2025
Department of Pharmacology, Kagawa University, Kagawa, Japan.
Aim: Sodium-glucose cotransporter 2 (SGLT2) inhibitors consistently demonstrate renal protection against progressive kidney disease. We hypothesised that SGLT2 inhibition reduces blood glucose levels in peri-proximal tubular capillaries by limiting reabsorption from the tubular filtrate, thereby safeguarding the renal microvasculature from hyperglycaemic stress.
Materials And Methods: In anaesthetised streptozotocin-induced type 1 and Otsuka-Long Evans fatty (OLETF) type 2 diabetic rats, we measured the arterial-to-renal venous glucose ratio (RV/A) to evaluate the effects of canagliflozin, a SGLT2 inhibitor.
Drug Deliv
December 2025
School of Pharmaceutical Sciences, Capital Medical University, Beijing, China.
Obesity is a global health crisis strongly linked to increased risk of type 2 diabetes, cardiovascular diseases, and other metabolic disorders. Glucagon-like peptide-1 (GLP-1) has emerged as an effective macromolecular therapeutic agent for weight management. This study addressed obesity management from three distinct perspectives: enhancing drug dispersion and bioavailability through a novel drug delivery device, extending drug half-life by developing sustained-release formulations, and sustaining the weight loss through implementation of structured dietary protocols.
View Article and Find Full Text PDFJ Dent Res
September 2025
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
The diabetic microenvironment intensifies M1-type macrophage-mediated inflammation and impairs bone regeneration. Glycophagy-a process of glycogen-selective autophagy that degrades intracellular glycogen into glucose-is essential for maintaining glucose homeostasis under metabolic stress. The role of glycophagy in regulating M1-type polarization remains unclear.
View Article and Find Full Text PDF