Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficient neurosurgical treatment for advanced Parkinson's disease. Non-invasive metabolic neuroimaging during the course of DBS in animal models may contribute to our understanding of its action mechanisms. Here, DBS was adapted to in vivo proton magnetic resonance spectroscopy at 11.7 T in the rat to follow metabolic changes in main basal ganglia structures, the striatum, and the substantia nigra pars reticulata (SNr). Measurements were repeated OFF and ON acute and subchronic (7 days) STN-DBS in control and parkinsonian (6-hydroxydopamine lesion) conditions. Acute DBS reversed the increases in glutamate, glutamine, and GABA levels induced by the dopamine lesion in the striatum but not in the SNr. Subchronic DBS normalized GABA in both the striatum and SNr, and glutamate in the striatum. Taurine levels were markedly decreased under subchronic DBS in the striatum and SNr in both lesioned and unlesioned rats. Microdialysis in the striatum further showed that extracellular taurine was increased. These data reveal that STN-DBS has duration-dependent metabolic effects in the basal ganglia, consistent with development of adaptive mechanisms. In addition to counteracting defects induced by the dopamine lesion, prolonged DBS has proper effects independent of the pathological condition. Non-invasive metabolic neuroimaging might be useful to understand the physiological mechanisms of deep brain stimulation (DBS). Here, we demonstrate the feasibility of repeated high-field proton magnetic resonance spectroscopy of basal ganglia structures under subthalamic nucleus DBS in control and parkinsonian rats. Results show that DBS has both rapid and delayed effects either dependent or independent of disease state.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.13015DOI Listing

Publication Analysis

Top Keywords

deep brain
12
brain stimulation
12
subthalamic nucleus
12
basal ganglia
12
striatum snr
12
dbs
10
metabolic changes
8
parkinsonian rats
8
stimulation dbs
8
non-invasive metabolic
8

Similar Publications

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF

Aim: A total of 30% of individuals with epilepsy are resistant to drug treatment. Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) shows promise for treating drug-resistant epilepsy (DRE), but further research is needed to optimize DBS parameters, including stimulation frequency. This study aimed to reveal the optimal frequency for ANT-DBS by testing the real-time effects of various stimulation frequencies on the ANT among patients undergoing stereoelectroencephalography (SEEG) electrode implantation.

View Article and Find Full Text PDF

Background And Purpose: White matter hyperintensity (WMH) impairs cognitive function but is not evident in the early stage, raising the need to explore the underlying mechanism. We aimed to investigate the potential role of network structure-function coupling (SC-FC coupling) in cognitive performance of WMH patients.

Methods: A total of 617 participants with WMH (mean age = 61 [SD = 8]; 287 females [46.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) is an emerging treatment for otherwise treatment-refractory psychiatric disorders. It can produce remarkable clinical results in expert hands, but has not fared as well in controlled, multisite trials. That difficulty with scaling up arises in part because DBS' mechanisms are poorly understood, meaning that it is difficult to objectively identify patients likely to respond and/or to customize stimulation to match individual patients' needs.

View Article and Find Full Text PDF

Characterization of CNS Network Changes in Two Rodent Models of Chronic Pain.

Biol Pharm Bull

September 2025

Computational and Biological Learning Laboratory, University of Cambridge, Cambridge CB21PZ, United Kingdom.

Neuroimaging in rodents holds promise for advancing our understanding of the central nervous system (CNS) mechanisms that underlie chronic pain. Employing two established, but pathophysiologically distinct rodent models of chronic pain, the aim of the present study was to characterize chronic pain-related functional changes with resting-state functional magnetic resonance imaging (fMRI). In Experiment 1, we report findings from Lewis rats 3 weeks after Complete Freund's adjuvant (CFA) injection into the knee joint (n = 16) compared with the controls (n = 14).

View Article and Find Full Text PDF