Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus.

Virus Res

Centre National de la Recherche Scientifique, Aix-Marseille Université, UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France. Electronic address:

Published: December 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The successive emergence of highly pathogenic coronaviruses (CoVs) such as the Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 has stimulated a number of studies on the molecular biology. This research has provided significant new insight into functions and activities of the replication/transcription multi-protein complex. The latter directs both continuous and discontinuous RNA synthesis to replicate and transcribe the large coronavirus genome made of a single-stranded, positive-sense RNA of ∼30 kb. In this review, we summarize our current understanding of SARS-CoV enzymes involved in RNA biochemistry, such as the in vitro characterization of a highly active and processive RNA polymerase complex which can associate with methyltransferase and 3'-5' exoribonuclease activities involved in RNA capping, and RNA proofreading, respectively. The recent discoveries reveal fascinating RNA-synthesizing machinery, highlighting the unique position of coronaviruses in the RNA virus world.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114481PMC
http://dx.doi.org/10.1016/j.virusres.2014.10.008DOI Listing

Publication Analysis

Top Keywords

rna synthesis
8
respiratory syndrome
8
involved rna
8
rna
7
insights rna
4
synthesis capping
4
capping proofreading
4
proofreading mechanisms
4
mechanisms sars-coronavirus
4
sars-coronavirus successive
4

Similar Publications

Mitochondria-associated condensates maintain mitochondrial homeostasis and promote lifespan.

Nat Aging

September 2025

State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.

Membraneless organelles assembled by liquid-liquid phase separation interact with diverse membranous organelles to regulate distinct cellular processes. It remains unknown how membraneless organelles are engaged in mitochondrial homeostasis. Here we demonstrate that mitochondria-associated translation organelles (MATOs) mediate local synthesis of proteins required for structural and functional maintenance of mitochondria.

View Article and Find Full Text PDF

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF

Pediatric acute myeloid leukemia (pAML) is a heterogeneous malignancy driven by diverse cytogenetic mutations. While identification of cytogenetic lesions improved risk stratification, prognostication remains inadequate with 30% of standard-risk patients experiencing relapse within 5 years. To deeply characterize pAML heterogeneity and identify poor outcome-associated blast cell profiles, we performed an analysis on 708,285 cells from 164 bone marrow biopsies of 95 patients and 11 healthy controls.

View Article and Find Full Text PDF

regulates early postnatal DPP4 preadipocyte pool expansion.

Genes Dev

September 2025

RU Adipocytes and Metabolism, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany;

Adipose tissue is rapidly expanding early in life. Elucidating the queues facilitating this process will advance our understanding of metabolically healthy obesity. Using single-cell RNA sequencing, we identified compositional differences of prewean and adult murine subcutaneous adipose tissue.

View Article and Find Full Text PDF

Human skeletal muscle comprises slow-twitch (type I) and fast-twitch (type II) fibers. Fiber type-specific analyses often require manual isolation of fibers, necessitating effective tissue preservation. While freeze-drying remains the standard, alternative preservation methods such as RNAlater and RNAlater-ICE are increasingly used.

View Article and Find Full Text PDF