98%
921
2 minutes
20
Chemiosmotic coupling is universal: practically all cells harness electrochemical proton gradients across membranes to drive ATP synthesis, powering biochemistry. Autotrophic cells, including phototrophs and chemolithotrophs, also use proton gradients to power carbon fixation directly. The universality of chemiosmotic coupling suggests that it arose very early in evolution, but its origins are obscure. Alkaline hydrothermal systems sustain natural proton gradients across the thin inorganic barriers of interconnected micropores within deep-sea vents. In Hadean oceans, these inorganic barriers should have contained catalytic Fe(Ni)S minerals similar in structure to cofactors in modern metabolic enzymes, suggesting a possible abiotic origin of chemiosmotic coupling. The continuous supply of H2 and CO2 from vent fluids and early oceans, respectively, offers further parallels with the biochemistry of ancient autotrophic cells, notably the acetyl CoA pathway in archaea and bacteria. However, the precise mechanisms by which natural proton gradients, H2, CO2 and metal sulphides could have driven organic synthesis are uncertain, and theoretical ideas lack empirical support. We have built a simple electrochemical reactor to simulate conditions in alkaline hydrothermal vents, allowing investigation of the possibility that abiotic vent chemistry could prefigure the origins of biochemistry. We discuss the construction and testing of the reactor, describing the precipitation of thin-walled, inorganic structures containing nickel-doped mackinawite, a catalytic Fe(Ni)S mineral, under prebiotic ocean conditions. These simulated vent structures appear to generate low yields of simple organics. Synthetic microporous matrices can concentrate organics by thermophoresis over several orders of magnitude under continuous open-flow vent conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247476 | PMC |
http://dx.doi.org/10.1007/s00239-014-9658-4 | DOI Listing |
Inorg Chem
September 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
Confronting the dual challenges of carbon neutrality and sustainable energy, photocatalytic CO reduction requires precise control over product selectivity. This study demonstrates that surface hydroxyl (-OH) density serves as a molecular switch for reaction pathways in graphene oxide/cobalt tetraphenylporphyrin (GO/CoTPP) hybrids. By tuning the reduction degree of GO supports via gradient hydrazine hydrate treatment (0-85%), we constructed catalysts with controlled -OH concentrations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P.R. China.
Electrocatalytic coupling of nitrate reduction (NORR) to ammonia with 5-hydroxymethylfurfural (HMF) oxidation to 2,5-furandicarboxylic acid (FDCA) enables simultaneous wastewater remediation and biomass valorization. However, developing efficient bifunctional electrocatalysts for these multiproton-coupled electron transfer reactions remains challenging as conventional single-active-site catalysts inherently suffer from linear scaling relationships between intermediates and adsorption energies, particularly sluggish proton transfer. To address this, we engineered a triphasic N-doped CuO@CoO@Ni(OH) heterostructure with a gradient built-in electric field (BIEF), which synergistically enhances interfacial charge polarization and accelerates proton transport through dynamic coupling effects in both reactions: sufficient *H supply for NORR and fast Ni(OH)/NiOOH redox cycling during HMF oxidation (HMFOR), thus achieving unprecedented bifunctional performance: at - 0.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Biosystems Science and Engineering, ETH Zürich, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.
Herein, an implantable, miniature biohybrid device has been developed that utilizes light-dependent ion-gradient formation by genetically engineered human designer cells, expressing light-activated ion channels and proton pumps to generate electrical potential and deliver electrical energy. These designer cells are cultured in custom-designed polycarbonate chambers, connected by electrodes and separated from an ion reservoir by a proton-selective Nafion membrane. Upon illumination, the light-activated channels and pumps on the designer cells establish a sustained proton gradient across the Nafion membrane, which drives an electrical current in the external circuit.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
Biological ion channels can regulate finely the ion transmembrane permeation, with superhigh ion selectivity and on-off ion flux in response to external stimuli, for signal transduction and energy conversion. However, fabricating smart artificial nanochannels with analogous functions remain challenging by single design of structure or charge property. In vivo, function basis of pH-gated TWIK-related acid-sensitive K channel 2 (TASK2) channels is attributed to synergy control of geometrical conformation and surface potential for filter gates.
View Article and Find Full Text PDFNat Commun
August 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
The challenge of achieving high recognition accuracy in artificial mechanoreceptors arises from the trade-off between sensitivity and stability in the sensing unit. Inspired by human skin, we developed a biomimetic approach that involves structural and engineering enhancements for ionic-conducting polyvinyl alcohol/TiCT (PVA/MXene) composite hydrogel microneedles (HM) to enhance the sensitivity. By integrating the HM with a polyethylene terephthalate/indium tin oxide (PET/ITO) film, we create a non-faradaic junction that ensures stable electrical output without transmission loss under stimulation.
View Article and Find Full Text PDF