Adv Mater
September 2025
Herein, an implantable, miniature biohybrid device has been developed that utilizes light-dependent ion-gradient formation by genetically engineered human designer cells, expressing light-activated ion channels and proton pumps to generate electrical potential and deliver electrical energy. These designer cells are cultured in custom-designed polycarbonate chambers, connected by electrodes and separated from an ion reservoir by a proton-selective Nafion membrane. Upon illumination, the light-activated channels and pumps on the designer cells establish a sustained proton gradient across the Nafion membrane, which drives an electrical current in the external circuit.
View Article and Find Full Text PDFAdv Mater
November 2024
Closed-loop control systems for precise control of therapeutic gene expression are promising candidates for personalized treatment of chronic ailments such as diabetes. Pancreatic iβ-cells are engineered with blue-light-inducible melanopsin to drive rapid insulin release by vesicular secretion from intracellular stores. In this work, a glucose-operated widget (GLOW) is designed as a component of a closed-loop control system for diabetes treatment by employing a probe that emits blue fluorescence in a glucose-concentration-dependent manner as a real-time glucose sensor to precisely control insulin release from these iβ-cells.
View Article and Find Full Text PDFThe development of technologies to enable fresh water harvesting from atmospheric moisture could help overcome the problem of potable water scarcity. Here, an atmospheric water harvesting (AWH) device is assembled in a core-shell structure, with the core consisting of networks of alginate (Alg) and polyaniline (PANI) and the outer layer consisting of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) modified with sulfonic acid groups (SPNIPAM) to increase the water adsorption at low relative humidity. The resulting hydrogel, modified with lithium chloride (LiCl) for increased water storage capacity (SPNIPAM-Li-PANIAlg), displays a similar lower critical solution temperature to pristine PNIPAM (32 °C) while affording a 15-fold higher water capture ratio, and releases water upon exposure to sunlight at intensities less than 1 kW m .
View Article and Find Full Text PDFPrecision medicine requires smart, ultrasensitive, real-time profiling of bio-analytes using interconnected miniaturized devices to achieve individually optimized healthcare. Here, we report a versatile bioelectronic interface (VIBE) that senses signaling-cascade-guided receptor-ligand interactions via an electronic interface. We show that VIBE offers a low detection limit down to sub-nanomolar range characterised by an output current that decreases significantly, leading to precise profiling of these peptide hormones throughout the physiologically relevant concentration ranges.
View Article and Find Full Text PDFAdv Sci (Weinh)
August 2023
Existing devices for generating electrical power from water vapor in ambient air require high levels of relative humidity (RH), cannot operate for prolonged periods, and provide insufficient output for most practical applications. Here a heterogeneous moisture-driven electrical power generator (MODEG) is developed in the form of a free-standing bilayer of polyelectrolyte films, one consisting of a hygroscopic matrix of graphene oxide(GO)/polyaniline(PANI) [(GO)PANI] and the other consisting of poly(diallyldimethylammonium chloride)(PDDA)-modified fluorinated Nafion (F-Nafion (PDDA)). One MODEG unit (1 cm ) can deliver a stable open-circuit output of 0.
View Article and Find Full Text PDFCurrently available bioelectronic devices consume too much power to be continuously operated on rechargeable batteries, and are often powered wirelessly, with attendant issues regarding reliability, convenience, and mobility. Thus, the availability of a robust, self-sufficient, implantable electrical power generator that works under physiological conditions would be transformative for many applications, from driving bioelectronic implants and prostheses to programing cellular behavior and patients' metabolism. Here, capitalizing on a new copper-containing, conductively tuned 3D carbon nanotube composite, an implantable blood-glucose-powered metabolic fuel cell is designed that continuously monitors blood-glucose levels, converts excess glucose into electrical power during hyperglycemia, and produces sufficient energy (0.
View Article and Find Full Text PDFGreen chemistry has paved an 'avant-garde avenue' in the production and fabrication of eco-friendly stable nanoparticles employing the utilization of biological agents. In the present study we present the first report on the potential of the marine bacterium PBCW2 for the extracellular production of gold nanoparticles (AuNPs). Utilizing a variety of methods, AuNPs in the cell-free supernatant of (CFS-LBOE) were identified and their antioxidant, antibacterial, and dye-degrading properties were examined.
View Article and Find Full Text PDFThe present work reported the polyaniline (PANI) and multiwalled carbon nanotube (MWCNT)-based nanocomposite as a sensing material for the determination of aqueous ammonia by the enhanced fluorescence method. The excitation wavelength-dependent photoluminescence (PL) intensity has shown dual emission peaks at 340 and 380 nm that correspond to two different excitation energy states. The pH-based PL intensity and zeta potential variation were analyzed to optimize the suitable medium for aqueous ammonia sensing.
View Article and Find Full Text PDFA novel amine terminated multiwall carbon nanotubes/polyaniline/reduced graphene oxide/gold nanoparticles modified screen-printed carbon electrode (SPCE) was fabricated. Followed by, glucose oxidase (GOx) was immobilized on SPCE for highly sensitive glucose biosensor. The synthesized nanomaterial and their composites were characterized using scanning electron microscope (SEM) and UV-Visible spectroscopy.
View Article and Find Full Text PDFA highly sensitive and selective glutamate biosensor using glutamate Oxidase (GlUtOx) immobilized platinum nanoparticle (PtNP) decorated multiwall carbon nanotube (MWCNTs)/polypyrrole (PPy) composite on glassy carbon electrodes (GC) is demonstrated. PtNP decorated MWCNTs (Pt-MWCNTs), PPy and Pt-MWCNTs/PPy composite were characterized by Field Emission Scanning Electron Microscope (FESEM), X-ray diffraction (XRD) and Raman analysis to confirm the formation of the nanocomposite. The glutamate Oxidase (GlUtOx) was immobilized on a GC/Pt-MWCNTs/PPy and characterized by the cyclic voltammetry (CV) and impedance spectroscopy (EIS) analysis.
View Article and Find Full Text PDFPolyaniline (PANI) functionalized multiwall carbon nanotubes (MWCNTs) were prepared via in situ chemical polymerization process of aniline, in which MWCNTs were spray coated on the fabric for wearable ammonia sensor. Structural, morphological, thermal properties and wettability were analyzed by scanning electron microscope, X-ray diffraction, Raman analysis and contact angle measurement. No substantial change in base resistance of MWCNTs/PANI fabric sensor was observed for a wide range of bending (from 90° to 270°) shows excellent wearability.
View Article and Find Full Text PDFArch Biochem Biophys
April 2010
Nitrosative stress has various pathophysiological implications. We here present a detailed characterization on the effect of nitrosative stress in Saccharomyces cerevisiae wild-type (Y190) and its isogenic flavohemoglobin mutant (Deltayhb1) strain grown in presence of non fermentable carbon source. On addition of sub-toxic dose of nitrosating agent both the strains showed microbiostatic effect.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2009
Protein tyrosine nitration (PTN) is a selective post-translational modification often associated with pathophysiological conditions. Although yeast cells lack of mammalian nitric oxide synthase (NOS) orthologues, still it has been shown that they are capable of producing nitric oxide (NO). Our studies showed that NO or reactive nitrogen species (RNS) produced in flavohemoglobin mutant (Deltayhb1) strain along with the wild type strain (Y190) of Saccharomyces cerevisiae can be visualized using specific probe 4,5-diaminofluorescein diacetate (DAF-2DA).
View Article and Find Full Text PDF