98%
921
2 minutes
20
The clinical and imaging evaluation of peripheral neuropathies in patients with cancer is challenging. It is critically important to differentiate malignant invasion of the peripheral nervous system from nonmalignant causes, such as radiation-induced neuritis, neuropathy associated with chemotherapy, and inflammatory neuropathies. Contrast material-enhanced magnetic resonance (MR) imaging is the initial noninvasive test of choice; however, interpretation can be challenging when the anatomic features are distorted by prior surgery, radiation, or both. Fluorine 18 ((18)F)-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is an imaging adjunct to MR imaging that is particularly helpful for evaluating peripheral nerves because the metabolic activity depicted with (18)F-FDG PET/CT helps differentiate malignant from benign disease and assists in making certain management decisions. For example, sites of high (18)F-FDG activity in a peripheral nerve can be targeted to increase the diagnostic yield of a biopsy because malignant involvement of peripheral nerves can be patchy. Of note, (18)F-FDG PET/CT can show clinically unsuspected metastases elsewhere in the body. If cancer is found, (18)F-FDG PET/CT allows excellent assessment of treatment response. (18)F-FDG PET/CT is also useful in evaluating primary nerve sheath tumors in that such tumors with low metabolic activity on FDG PET/CT images are unlikely to be malignant, although the specificity is limited. It is essential to have a good understanding of the imaging characteristics of benign and malignant causes of peripheral neuropathy if (18)F-FDG PET/CT is to be used effectively for accurate diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/rg.347130129 | DOI Listing |
Int J Surg
September 2025
Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
Background: Precise preoperative discrimination of invasive lung adenocarcinoma (IA) from preinvasive lesions (adenocarcinoma in situ [AIS]/minimally invasive adenocarcinoma [MIA]) and prediction of high-risk histopathological features are critical for optimizing resection strategies in early-stage lung adenocarcinoma (LUAD).
Methods: In this multicenter study, 813 LUAD patients (tumors ≤3 cm) formed the training cohort. A total of 1,709 radiomic features were extracted from the PET/CT images.
Indian J Nucl Med
August 2025
Department of Nuclear Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive type of non-Hodgkin lymphoma. Accurate evaluation of treatment response is essential for effective management. This case report discusses the potential role of ⁶⁸Ga-Pentixafor positron emission tomography (PET)/computed tomography (CT) in comparison to F-fluorodeoxyglucose PET/CT for assessing treatment response in a patient with DLBCL.
View Article and Find Full Text PDFIndian J Nucl Med
August 2025
Department of Haematology and Haemato-Oncology, Aster Medcity, Kochi, Kerala, India.
Erdheim-Chester disease (ECD) is a rare systemic non-Langerhans cell histiocytosis with multiple organ involvement. Being a rare disease with variable clinical manifestations, it is often difficult to diagnose. F-2-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) plays a vital role in assessing disease extent and severity, diagnosis, treatment response and is a potential biomarker for BRAF mutation.
View Article and Find Full Text PDFIndian J Nucl Med
August 2025
Department of Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India.
Lung cancer is the leading cause of cancer and cancer-related deaths, and India ranks the fourth highest country. Lung cancer is a highly aggressive malignancy with a tendency for rapid progression, making early detection and prompt treatment essential for improving patient outcomes. Lung cancer can spread locally into surrounding tissue as well as travel through lymphatics to other parts of the body, most often to bone, brain, liver, and adrenal glands.
View Article and Find Full Text PDFMini Rev Med Chem
September 2025
Department of PET/CT Diagnostic Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
The diagnosis of adrenocortical tumors remains clinically challenging due to overlapping morphological and functional features between benign, malignant, and hormonally active lesions. Malignant and functional tumors are frequently associated with poor prognosis. Traditional morphological imaging methods, such as CT and MRI, cannot reliably distinguish lesion types.
View Article and Find Full Text PDF