Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-014-8936-xDOI Listing

Publication Analysis

Top Keywords

receptor-mediated neurotransmission
8
radioligand binding
8
dopamine receptors
8
agonist affinity
8
striatal
6
dopamine
5
receptors
5
stronger dopamine
4
dopamine receptor-mediated
4
neurotransmission dyskinesia
4

Similar Publications

Unlabelled: Repeated exposure to stress disrupts cognitive processes, including attention and working memory. A key mechanism supporting these functions is the ability of neurons to sustain action potential firing, even after a stimulus is no longer present. How stress impacts this persistent neuronal activity is currently unknown.

View Article and Find Full Text PDF

Astrocytes are key players in chronic pain, driving maladaptive changes in neuronal circuits. Yet, their influence on acute nociception-the body's first line of defense against harmful stimuli-remains poorly understood. Using chemogenetic tools to mimic endogenous astrocytic G-protein-coupled receptor-mediated signaling, we reveal that astrocytes induce bidirectional plasticity at nociceptive synapses in the dorsal horn.

View Article and Find Full Text PDF

Epilepsy is a common neurological disorder resulting from an imbalance between neuronal excitation and inhibition. Synapses play a pivotal role in the pathogenesis of epilepsy. Src-homology 2 (SH2) domain-containing protein 5 (SH2D5) is highly expressed in the brain and is implicated in the regulation of synaptic function.

View Article and Find Full Text PDF

Agmatine, a decarboxylation product of L-arginine, has been proposed as a novel neurotransmitter/neuromodulator with diverse neuroprotective and antidepressant-like effects. Although its therapeutic potential has been explored, the precise mechanisms by which agmatine modulates synaptic transmission and plasticity in the hippocampus remain unclear. In this study, we investigated the effects of agmatine on the induction and maintenance of long-term potentiation (LTP) in the CA1 region of mouse hippocampal slices, its ability to counteract amyloid-β (Aβ1-42)-induced LTP impairment, and the receptor systems involved.

View Article and Find Full Text PDF

Introduction: Sodium benzoate (NaBen), a D-amino acid oxidase inhibitor, has been demonstrated to possess antipsychotic and cognition-enhancing effects in animal models. However, the clinical findings in patients with schizophrenia and dementia are mixed and inconclusive.

Objectives: To further improve its therapeutic potential, a novel crystalline polymorph of NaBen (abbreviated as Ω-NaBen) was developed.

View Article and Find Full Text PDF