Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Low temperature is a major environmental constraint on the production of apples worldwide. An apple rootstock with high cold tolerance was selected to identify genes related to stress tolerance. The transcriptional profiles of the genes in the leaves were examined after various intervals of exposure to cold stress. We obtained three libraries of 14,219, 11,176 and 16,116 tag-mapped predicted coding sequences at three time points (0, 1 and 6 h) during cold stress. In the two time periods, which were from 0 to 1 h and from 1 to 6 h, 139 and 1,085 genes were upregulated, and 1,499 and 381 genes were downregulated, respectively. These groups included a large number of unknown genes. The distribution of genes indicated cold adaptation in the plant. Most of the differential expression genes (DEGs) had temporal specificity and significantly different expression changes at different time points. The classification of DEGs by GO category and KEGG pathway analysis revealed that the DEGs are involved in numerous biological pathways, including metabolism, plant-pathogen interaction and signal transduction. Eleven randomly selected tag-mapped genes were examined by qRT-PCR. The results of the qRT-PCR were in accordance with the transcriptional profiles. The most upregulated gene (MDP0000198054) from 0 to 1 h encodes a dehydration-responsive element-binding protein/C-repeat factor (DREB/CBF). In this study, MDP0000198054 and related genes involved in the cold stress response were discussed. These results could provide new insights into the stress tolerance mechanisms of apple rootstocks.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-014-3802-5DOI Listing

Publication Analysis

Top Keywords

cold stress
12
genes
10
stress tolerance
8
transcriptional profiles
8
time points
8
stress
6
cold
5
identification novel
4
novel differentially
4
differentially expressed
4

Similar Publications

Background: Phrenic nerve injury during mediastinal tumor resection can lead to significant postoperative diaphragmatic dysfunction. Current intraoperative protection techniques are imprecise and lack real-time feedback. We aimed to develop and validate a quantifiable, multimodal neuroprotective strategy.

View Article and Find Full Text PDF

Most of the United States (US) population resides in cities, where they are subjected to the urban heat island effect. In this study, we develop a method to estimate hourly air temperatures at resolution, improving exposure assessment of US population when compared to existing gridded products. We use an extensive network of personal weather stations to capture the intra-urban variability.

View Article and Find Full Text PDF

Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.

View Article and Find Full Text PDF

Analysis of physiological characteristics and gene co-expression networks in roots under low-temperature stress.

Front Plant Sci

August 2025

Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China.

is the most widely cultivated high-protein forage crop globally. However, its cultivation in high-latitude and cold regions of China is significantly hindered by low-temperature stress, particularly impacting the root system, the primary functional tissue crucial for winter survival. The physiological and molecular mechanisms underlying the root system's adaptation and tolerance to low temperatures remain poorly understood.

View Article and Find Full Text PDF

Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.

View Article and Find Full Text PDF