Designing "high-affinity, high-specificity" glycosaminoglycan sequences through computerized modeling.

Methods Mol Biol

Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA, 23298, USA.

Published: June 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The prediction of high-affinity and/or high-specificity protein-glycosaminoglycan (GAG) interactions is an inherently difficult task, due to several factors including the shallow nature of the typical GAG-binding site and the inherent size, flexibility, diversity, and polydisperse nature of the GAG molecules. Here, we present a generally applicable methodology termed Combinatorial Library Virtual Screening (CVLS) that can identify potential high-affinity, high-specificity protein-GAG interactions from very large GAG combinatorial libraries and a suitable GAG-binding protein. We describe the CVLS approach along with the rationale behind it and provide validation for the method using the well-known antithrombin-thrombin-heparin system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4452111PMC
http://dx.doi.org/10.1007/978-1-4939-1714-3_24DOI Listing

Publication Analysis

Top Keywords

designing "high-affinity
4
"high-affinity high-specificity"
4
high-specificity" glycosaminoglycan
4
glycosaminoglycan sequences
4
sequences computerized
4
computerized modeling
4
modeling prediction
4
prediction high-affinity
4
high-affinity and/or
4
and/or high-specificity
4

Similar Publications

Rational Hapten Design for the Immunochromatographic Assay of Yohimbine, an Emerging Adulterant in Food.

J Agric Food Chem

September 2025

Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.

Adulterated yohimbine (YHB) in food poses a risk to public health, making it imperative to develop fast and sensitive detection methods. In this study, computational-chemistry-based prediction was employed to design YHB haptens for generating the high-affinity monoclonal antibody Yohi-4A7, which exhibited an optimal half-inhibitory concentration (IC) of 1.69 ng/mL against YHB.

View Article and Find Full Text PDF

Proteolysis-targeting chimeras (PROTACs) have emerged as a powerful modality for selectively degrading intracellular proteins via the ubiquitin-proteasome system. However, their development is often hindered by the limited availability of high-affinity small-molecule ligands, particularly for challenging targets, such as transcription factors. Aptamers─synthetic oligonucleotides with high affinity and specificity─offer a promising alternative as target-binding modules in the PROTAC design.

View Article and Find Full Text PDF

Isatuximab is an IgG1k monoclonal antibody that binds with high affinity to CD38 expressed on plasma cells. Anti-CD38 antibodies have shown efficacy as monotherapy and in combination in a variety of settings for patients with multiple myeloma and light chain (AL) amyloidosis. This multi-center, cooperative group phase 2 trial was designed to evaluate hematologic response, organ response, and safety of isatuximab monotherapy for the treatment of relapsed AL amyloidosis.

View Article and Find Full Text PDF

Design and characterisation of high-affinity aptamers for detecting HIV integrase.

Anal Chim Acta

November 2025

HIV-1 Molecular Epidemiology Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Microbiology Department, Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, 28034, Spain. Electronic address:

Background: Currently, 39.9 million people are infected with the human immunodeficiency virus (HIV), and 1.3 million new infections occur annually, with over 170 circulating variants.

View Article and Find Full Text PDF

Aptamers are single-stranded DNA or RNA oligonucleotides that can bind to specific target molecules with high affinity and specificity. Fluorescence DNA aptamer-based biosensors (aptasensors) have emerged as powerful analytical tools for detecting diverse targets, ranging from food contaminants to disease biomarkers, owing to their exceptional specificity, high sensitivity, and cost-effectiveness. This review systematically summarizes recent advances in the design strategies of fluorescence aptasensors, focusing on three key approaches: (1) fluorescence resonance energy transfer-based signal amplification, (2) nanomaterial-enhanced probes, and (3) multi-channel platforms for simultaneous detection.

View Article and Find Full Text PDF