Probing protein targeting to plasmodesmata using fluorescence recovery after photo-bleaching.

Methods Mol Biol

Cell and Molecular Sciences Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK,

Published: June 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluorescence recovery after photo-bleaching (FRAP) involves the irreversible bleaching of a fluorescent protein within a specific area of the cell using a high-intensity laser. The recovery of fluorescence represents the movement of new protein into this area and can therefore be used to investigate factors involved in this movement. Here we describe a FRAP method to investigate the effect of a range of pharmacological agents on the targeting of Tobacco mosaic virus movement protein to plasmodesmata.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-1523-1_17DOI Listing

Publication Analysis

Top Keywords

fluorescence recovery
8
recovery photo-bleaching
8
movement protein
8
probing protein
4
protein targeting
4
targeting plasmodesmata
4
plasmodesmata fluorescence
4
photo-bleaching fluorescence
4
photo-bleaching frap
4
frap involves
4

Similar Publications

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

Carbon quantum dot-aptamer/MoS nanosheet fluorescent sensor for ultrasensitive, noninvasive cortisol detection.

Anal Bioanal Chem

September 2025

Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.

This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.

View Article and Find Full Text PDF

A nanozyme-mediated cascade reaction system for fluorometric and colorimetric dual-mode detection of sarcosine (SA) was developed. The nanozymes (Zn-Glu@Hemin) were synthesized via a rapid self-assembly within 10 min at room temperature. Importantly, the Zn-Glu@Hemin exhibited strong peroxidase (POD)-mimicking activity, catalyzing the generation of hydroxyl radical (·OH) and superoxide anion (O) from hydrogen peroxide (HO), enhancing the fluorescence reaction of o-phenylenediamine (OPD) and the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine (TMB).

View Article and Find Full Text PDF

An ultrasensitive biosensor for H1N1 virus coupled with 3D spherical DNA nanostructure and CRISPR-Cas12a.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China. Electronic address:

To achieve ultrasensitive and real-time detection of the H1N1 influenza virus, this study designed a nucleic acid-free fluorescent biosensor based on 3D spherical DNA nanostructure and CRISPR/Cas12a (3D-SDNC). The biosensor constructs a rigid 3D nano-framework via self-assembly of six oligonucleotide chains, with H1N1-specific nucleic acid aptamers and Cas12a activator strands strategically positioned at multi-spined vertices for precise spatial coupling between viral recognition and signal transduction. Upon aptamer-virus binding, the induced conformational change liberates the activator strand, thereby activating the trans-cleavage activity of the Cas12a/crRNA complex to efficiently cleave the HEX/BHQ1 double-labeled fluorescent probe and initiate cascade signal amplification.

View Article and Find Full Text PDF

Combination of Si@UiO-66-NH paper-based thin film microextraction with direct solid-state spectrofluorimetry for extraction and determination of estradiol in urine.

Anal Chim Acta

November 2025

Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran; Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran. Electronic address:

Background: Determination of the estradiol hormone in urine is crucial for evaluating congenital adrenal hyperplasia, certain hormone-producing ovarian tumors, polycystic ovary syndrome, liver disease, pregnancy, and infertility. On the other hand, steroid hormones can have destructive effects on the environment, animals, and the endocrine system of humans. Consequently, accurately measuring this hormone's concentration in trace amounts is essential for environmental safety and human health.

View Article and Find Full Text PDF