Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Time-dependent density functional theory method at the def-TZVP/B3LYP level was employed to investigate the intramolecular and intermolecular hydrogen bonding dynamics in the first excited (S1) state of 4'-dimethylaminoflavonol (DMAF) monomer and in ethanol solution. In the DMAF monomer, we demonstrated that the intramolecular charge transfer (ICT) takes place in the S1 state. This excited state ICT process was followed by intramolecular proton transfer. Our calculated results are in good agreement with the mechanism proposed in experimental work. For the hydrogen-bonded DMAF-EtOH complex, it was demonstrated that the intermolecular hydrogen bonds can induce the formation of the twisted intramolecular charge transfer (TICT) state and the conformational twisting is along the C3-C4 bond. Moreover, the intermolecular hydrogen bonds can also facilitate the intermolecular double proton transfer in the TICT state. A stepwise intermolecular double proton transfer process was revealed. Therefore, the intermolecular hydrogen bonds can alter the mechanism of intramolecular charge transfer and proton transfer in the excited state for the DMAF molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2014.09.024DOI Listing

Publication Analysis

Top Keywords

proton transfer
20
intramolecular charge
16
charge transfer
16
excited state
16
intermolecular hydrogen
16
intermolecular double
12
double proton
12
hydrogen bonds
12
transfer
9
twisted intramolecular
8

Similar Publications

The adsorption of amino acids on coinage metal surfaces is of interest for a range of biological applications. Central to advancing these applications is understanding the structure of the adsorbed molecules and the state they are present in. Cysteine, the focus of this work, has been studied extensively, both experimentally and theoretically.

View Article and Find Full Text PDF

Photocatalysis holds significant promise for the reduction of CO to valued chemicals under mild conditions. However, its potential is severely limited by weak CO adsorption and slow proton-coupled electron transfer (PCET) rates. In this work, ZnInS-based catalysts with varying hydroxyl contents were synthesized via the solvothermal method.

View Article and Find Full Text PDF

Adjusting interlayer interactions and proton-conduction pathways of 2D covalent organic frameworks through the rotaxane structures.

Natl Sci Rev

September 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.

Covalent organic frameworks (COFs) have great potential as versatile platforms for proton conduction. However, the commonly applied 2D COFs that are easy to design and synthesize have only 1D channels for proton conduction, limiting the formation of continuous hydrogen bonds due to the anisotropy between their crystalline grains. Herein, we report a strategy to construct 3D channels in 2D COFs by using rotaxane structures and eliminate the strong interlayer π-π interactions, facilitating the formation of smooth 3D proton-transfer pathways during guest doping.

View Article and Find Full Text PDF

Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.

View Article and Find Full Text PDF

Effect of a ligand on the asymmetric hydrogenation of cyclic -sulfonyl amines catalyzed by nickel.

Org Biomol Chem

September 2025

School of Chemistry & Environment; Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kun-ming 650504, China.

The present study utilizes density functional theory (DFT) to systematically investigate the effect of a ligand on the mechanism of nickel-catalyzed asymmetric hydrogenation of cyclic -sulfonyl imines, employing alcohol protons as the hydrogen source. By comparing the free energies of three catalytic pathways involving various coordinated nickel complexes with different ligands, we identify that the enantio-determining step is the nickel-hydride transfer. Notably, the reaction pathway initiated by the Ni(0) species through oxidative addition of alcohol is determined to be the most favorable.

View Article and Find Full Text PDF