98%
921
2 minutes
20
When developing an electronic skin with touch sensation, an array of tactile pressure sensors with various ranges of pressure detection need to be integrated. This requires low noise, highly reliable sensors with tunable sensing characteristics. We demonstrate the operation of tactile pressure sensors that utilize the spatial distribution of contact electrodes to detect various ranges of tactile pressures. The device consists of a suspended elastomer diaphragm, with a carbon nanotube thin-film on the bottom, which makes contact with the electrodes on the substrate with applied pressure. The electrodes separated by set distances become connected in sequence with tactile pressure, enabling consecutive electrodes to produce a signal. Thus, the pressure is detected not by how much of a signal is produced but by which of the electrodes is registering an output. By modulating the diaphragm diameter, and suspension height, it was possible to tune the pressure sensitivity and sensing range. Also, adding a fingerprint ridge structure enabled the sensor to detect the periodicity of sub-millimeter grating patterns on a silicon wafer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/25/42/425504 | DOI Listing |
Ophthalmol Glaucoma
September 2025
Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, Michigan. Electronic address:
Purpose: To investigate hand function and eye drop instillation success in adults with and without glaucoma.
Design: Cross-sectional pilot study.
Subjects: Adults aged ≥ 65 years with glaucoma who use eye drops daily and adults aged 65+ without glaucoma who do not regularly use eye drops.
Adv Mater
September 2025
Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China.
The high sensitivity and wide linearity are crucial for flexible tactile sensors in adapting to diverse application scenarios with high accuracy and reliability. However, conventional optimization strategies of constructing microstructures suffer from the mutual restriction between the high sensitivity and wide linearity. Herein, a novel design of localized gradient conductivity (LGC) with partly covered low-conductivity (low-σ) carbon/Polydimethylsiloxane layer on high-conductivity (high-σ) silver nanowires film upon the micro-dome structure is proposed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
The Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
Flexible sensors integrating motion detection and tactile perception capabilities demonstrate significant potential in aerospace biomechanics and medical rehabilitation. Here, we report a biomimetic inflatable chamber sensor that synergistically integrates pneumatic-auxiliary and electronic sensing for elbow joint health monitoring. The device architecture combines multiwalled carbon nanotube-reinforced silicone composites with embedded electrode arrays integrated within the inner lining of inflatable chambers, achieving high sensitivity while maintaining signal stability under electromagnetic interference.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China.
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision. While flexible pressure-sensing insoles show clinical potential, their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity (R > 0.99 up to 1 MPa) in conventional designs.
View Article and Find Full Text PDFJ Plast Reconstr Aesthet Surg
August 2025
Division of Plastic Surgery, New York-Presbyterian/Weill Cornell Medicine, New York, NY, USA. Electronic address:
Background: Loss of sensation after mastectomy impacts long-term satisfaction, yet thermal sensory outcomes remain understudied. This study compares tactile and thermal recovery following two-stage alloplastic versus neurotized autologous breast reconstruction.
Methods: In this prospective single-institution study, patients underwent mastectomy with either two-stage alloplastic or immediate neurotized DIEP flap reconstruction.