Quantification of DNA through a fluorescence biosensor based on click chemistry.

Analyst

MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.

Published: November 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A simple, sensitive and selective fluorescence biosensor for determination of DNA using CuS particles based on click chemistry is reported. Biotin-modified capture DNA was modified on Streptavidin MagneSphere Paramagnetic Particles (PMPs) and hybridized with target DNA (hepatitis B virus DNA had been chosen as an example), then bound target DNA was hybridized with DNA-CuS particles and formed a sandwich like structure. CuS particles on the sandwich structures can be destroyed by acid to form Cu(II), and Cu(II) can be reduced to Cu(I) by sodium ascorbate, which in turn catalyzes the reaction between a weak-fluorescent 3-azido-7-hydroxycoumarin and propargyl alcohol to form a fluorescent 1,2,3-triazole compound. Using this method, target DNA concentration can be determined by a change in the fluorescence intensity of the system. It is found that the fluorescence increase factor has a direct linear relationship to the logarithm of target DNA concentrations in the range of 0.1 to 100 nM, and the detection limit is 0.04 nM (S/N = 3). The proposed sensor not only allows high sensitivity and good reproducibility, but also has a good selectivity to single-nucleotide mismatches.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4an01438cDOI Listing

Publication Analysis

Top Keywords

target dna
16
fluorescence biosensor
8
based click
8
click chemistry
8
cus particles
8
dna
7
quantification dna
4
fluorescence
4
dna fluorescence
4
biosensor based
4

Similar Publications

Interferon-induced miR-7705 modulates the anti-virus activity of cholesterol 25-hydroxylase.

J Virol

September 2025

Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China.

Unlabelled: Cholesterol 25-hydroxylase (CH25H), an interferon-stimulated gene (ISG), has been implicated in broad-spectrum antiviral immunity. Here, we identify CH25H as a potent suppressor of hepatitis B virus (HBV) replication that significantly outperforms IFN-α in reducing HBV DNA, pregenomic RNA (pgRNA), HBsAg, and HBeAg, without inducing cytotoxicity. However, CH25H is weakly expressed in hepatocytes and only modestly induced by type I interferon.

View Article and Find Full Text PDF

Unlabelled: Bovine respiratory disease (BRD) is the primary disease of cattle and is responsible for most of the antibiotic use in the beef industry, both for metaphylaxis and treatment. Infection prevention and targeted treatments would benefit from detecting and identifying bacterial pathogens and, ideally, assessing antibiotic sensitivity. Here, we report success refining targeted metagenomics by hybridization capture sequencing (CapSeq) to detect and genotype bacterial pathogens and genes for antibiotic resistance in BRD.

View Article and Find Full Text PDF

Background And Objective: Bladder cancer (BC) is the sixth most common cancer in the U.S., with risk factors such as smoking, older age, and male sex.

View Article and Find Full Text PDF

The Age-Associated Long Noncoding RNA lnc81 Regulates Ovarian Granulosa Cell Proliferation and Apoptosis Through TEAD2-CCN1/2 Pathway in Mice.

J Cell Physiol

September 2025

Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.

View Article and Find Full Text PDF

Live-cell imaging of intracellular proteins enables real-time observation of protein dynamics under near-physiological conditions, providing pivotal insights for both fundamental life science research and medical applications. However, due to limitations such as poor probe permeability and cytotoxicity associated with conventional antibody-based or genetically encoded labeling techniques, live-cell imaging remains a significant challenging. To address these limitations, here in this study, we developed and rigorously validated a novel aptamer-based fluorescent probe for real-time imaging of NEK9 kinase in living cells.

View Article and Find Full Text PDF