Reforestation with native mixed-species plantings in a temperate continental climate effectively sequesters and stabilizes carbon within decades.

Glob Chang Biol

Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Vic., 3125, Australia; Institute for Applied Ecology, University of Canberra, Bruce, ACT, 2617, Australia.

Published: April 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reforestation has large potential for mitigating climate change through carbon sequestration. Native mixed-species plantings have a higher potential to reverse biodiversity loss than do plantations of production species, but there are few data on their capacity to store carbon. A chronosequence (5-45 years) of 36 native mixed-species plantings, paired with adjacent pastures, was measured to investigate changes to stocks among C pools following reforestation of agricultural land in the medium rainfall zone (400-800 mm yr(-1)) of temperate Australia. These mixed-species plantings accumulated 3.09 ± 0.85 t C ha(-1) yr(-1) in aboveground biomass and 0.18 ± 0.05 t C ha(-1) yr(-1) in plant litter, reaching amounts comparable to those measured in remnant woodlands by 20 years and 36 years after reforestation respectively. Soil C was slower to increase, with increases seen only after 45 years, at which time stocks had not reached the amounts found in remnant woodlands. The amount of trees (tree density and basal area) was positively associated with the accumulation of carbon in aboveground biomass and litter. In contrast, changes to soil C were most strongly related to the productivity of the location (a forest productivity index and soil N content in the adjacent pasture). At 30 years, native mixed-species plantings had increased the stability of soil C stocks, with higher amounts of recalcitrant C and higher C:N ratios than their adjacent pastures. Reforestation with native mixed-species plantings did not significantly change the availability of macronutrients (N, K, Ca, Mg, P, and S) or micronutrients (Fe, B, Mn, Zn, and Cu), content of plant toxins (Al, Si), acidity, or salinity (Na, electrical conductivity) in the soil. In this medium rainfall area, native mixed-species plantings provided comparable rates of C sequestration to local production species, with the probable additional benefit of providing better quality habitat for native biota. These results demonstrate that reforestation using native mixed-species plantings is an effective alternative for carbon sequestration to standard monocultures of production species in medium rainfall areas of temperate continental climates, where they can effectively store C, convert C into stable pools and provide greater benefits for biodiversity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.12746DOI Listing

Publication Analysis

Top Keywords

mixed-species plantings
32
native mixed-species
28
reforestation native
12
production species
12
medium rainfall
12
mixed-species
8
plantings
8
temperate continental
8
carbon sequestration
8
years native
8

Similar Publications

Urbanization and increasing vehicular traffic have intensified air pollution, particularly the accumulation of particulate matter (PM), trace elements (TEs), and polycyclic aromatic hydrocarbons (PAHs) in urban environments. These pollutants pose significant risks to human health, urban ecosystems, and biodiversity. This study evaluates the efficacy of mixed-species vegetation barriers, comprising , , , and , in mitigating air pollution along three road types (highway, urban, and suburban).

View Article and Find Full Text PDF

Understanding the distribution patterns of soil bacterial community structure and diversity across different forest types is essential for elucidating the mechanisms underlying microbial community assembly and its ecological drivers, particularly under the pressures of climate change. In this study, we examined six forest types-including four monocultures and two mixed-species stands-to systematically evaluate the structural composition, diversity metrics, and functional potential of soil bacterial communities. Significant differences in microbial structure and functional composition were observed among forest types.

View Article and Find Full Text PDF

Enhanced effects of species richness on cadmium phytoextraction across eastern China: A meta-analysis.

Environ Res

August 2025

Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic a

The increasing cadmium (Cd) contamination induced by anthropogenic activities seriously damages the environment and human health. Increasing species richness is believed to mitigate the effects of metal contamination, thereby enhancing phytoremediation. However, the overall effects of increased species richness on plant remediation under Cd contamination, along with the underlying mechanisms, remain unclear.

View Article and Find Full Text PDF

Interactive effects of temperature and UV radiation on antibiotic uptake and degradation in a floating (Salvinia molesta) and a submerged/emergent (Myriophyllum aquaticum) macrophyte.

J Hazard Mater

July 2025

Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Paraná 81531-980, Brazil. Electronic address:

Pharmaceutical contaminants increasingly affect aquatic environments; however, the influence of environmental stressors on macrophyte-mediated antibiotic removal remains poorly understood. This study examined how temperature (15-29°C), UV radiation (UV-A and UV-B), and antibiotic exposure (500 ng/L azithromycin, 400 ng/L amoxicillin, 400 ng/L ciprofloxacin, and 900 ng/L sulfamethoxazole) interact to influence the phytoremediation capacity of Salvinia molesta (floating) and Myriophyllum aquaticum (submerged/emergent). Antibiotic uptake, metabolic transformation, and physiological response were assessed under controlled conditions.

View Article and Find Full Text PDF

Benthic bacteria, in particular those existing in seagrass rhizosphere, play pivotal roles in supporting the growth and health of their hosts and also in nutrient cycling. Abundant (AT, relative abundance ≥ 0.05%) and rare (RT, relative abundance ≤ 0.

View Article and Find Full Text PDF