98%
921
2 minutes
20
Neuroligins (Nlgs) are a family of cell adhesion molecules thought to be important for synapse maturation and function. Mammalian studies have shown that different Nlgs have different roles in synaptic maturation and function. In Drosophila melanogaster, the roles of Drosophila neuroligin1 (DNlg1), neuroligin2, and neuroligin4 have been examined. However, the roles of neuroligin3 (dnlg3) in synaptic development and function have not been determined. In this study, we used the Drosophila neuromuscular junctions (NMJs) as a model system to investigate the in vivo role of dnlg3. We showed that DNlg3 was expressed in both the CNS and NMJs where it was largely restricted to the postsynaptic site. We generated dnlg3 mutants and showed that these mutants exhibited an increased bouton number and reduced bouton size compared with the wild-type (WT) controls. Consistent with alterations in bouton properties, pre- and postsynaptic differentiations were affected in dnlg3 mutants. This included abnormal synaptic vesicle endocytosis, increased postsynaptic density length, and reduced GluRIIA recruitment. In addition to impaired synaptic development and differentiation, we found that synaptic transmission was reduced in dnlg3 mutants. Altogether, our data showed that DNlg3 was required for NMJ development, synaptic differentiation, and function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231665 | PMC |
http://dx.doi.org/10.1074/jbc.M114.574897 | DOI Listing |
Front Cell Neurosci
November 2023
School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China.
The larval neuromuscular junction (NMJ) is a well-known model system and is often used to study synapse development. Here, we show synaptic degeneration at NMJ boutons, primarily based on transmission electron microscopy (TEM) studies. When degeneration starts, the subsynaptic reticulum (SSR) swells, retracts and folds inward, and the residual SSR then degenerates into a disordered, thin or linear membrane.
View Article and Find Full Text PDFFront Neuroanat
June 2020
The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China.
Neurexins and neuroligins are common synaptic adhesion molecules that are associated with autism and interact with each other in the synaptic cleft. The neuromuscular junction (NMJ) bouton is a well-known model system in neuroscience, and ghost and satellite boutons, respectively, indicate the poor development and overgrowth of the NMJ boutons. However, the neurexin (DNrx) and neuroligins (DNlgs) are mainly observed in type Ib boutons, indicating the ultrastructural and developmental phenotypes of the NMJ.
View Article and Find Full Text PDFElife
March 2018
Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, China.
Neuroligins are postsynaptic adhesion molecules that are essential for postsynaptic specialization and synaptic function. But the underlying molecular mechanisms of neuroligin functions remain unclear. We found that Neuroligin 1 (DNlg1) regulates synaptic structure and function through WAVE regulatory complex (WRC)-mediated postsynaptic actin reorganization.
View Article and Find Full Text PDFJ Biol Chem
November 2014
Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China. Electronic address:
Neuroligins (Nlgs) are a family of cell adhesion molecules thought to be important for synapse maturation and function. Mammalian studies have shown that different Nlgs have different roles in synaptic maturation and function. In Drosophila melanogaster, the roles of Drosophila neuroligin1 (DNlg1), neuroligin2, and neuroligin4 have been examined.
View Article and Find Full Text PDF