Neurexin and neuroligins jointly regulate synaptic degeneration at the neuromuscular junction based on TEM studies.

Front Cell Neurosci

School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The larval neuromuscular junction (NMJ) is a well-known model system and is often used to study synapse development. Here, we show synaptic degeneration at NMJ boutons, primarily based on transmission electron microscopy (TEM) studies. When degeneration starts, the subsynaptic reticulum (SSR) swells, retracts and folds inward, and the residual SSR then degenerates into a disordered, thin or linear membrane. The axon terminal begins to degenerate from the central region, and the T-bar detaches from the presynaptic membrane with clustered synaptic vesicles to accelerate large-scale degeneration. There are two degeneration modes for clear synaptic vesicles. In the first mode, synaptic vesicles without actin filaments degenerate on the membrane with ultrafine spots and collapse and disperse to form an irregular profile with dark ultrafine particles. In the second mode, clear synaptic vesicles with actin filaments degenerate into dense synaptic vesicles, form irregular dark clumps without a membrane, and collapse and disperse to form an irregular profile with dark ultrafine particles. Last, all residual membranes in NMJ boutons degenerate into a linear shape, and all the residual elements in axon terminals degenerate and eventually form a cluster of dark ultrafine particles. Swelling and retraction of the SSR occurs prior to degradation of the axon terminal, which degenerates faster and with more intensity than the SSR. NMJ bouton degeneration occurs under normal physiological conditions but is accelerated in () , () and mutants and ; and ; double mutants, which suggests that both neurexin and neuroligins play a vital role in preventing synaptic degeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646337PMC
http://dx.doi.org/10.3389/fncel.2023.1257347DOI Listing

Publication Analysis

Top Keywords

synaptic vesicles
20
synaptic degeneration
12
form irregular
12
dark ultrafine
12
ultrafine particles
12
neurexin neuroligins
8
synaptic
8
neuromuscular junction
8
tem studies
8
nmj boutons
8

Similar Publications

MicroRNAs and synaptic dysfunction in Parkinson's disease.

Mol Ther Nucleic Acids

September 2025

Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA.

Parkinson's disease (PD) is a debilitating neurodegenerative condition. Synaptic dysfunctions are associated with the onset and progressive neurodegeneration exhibited in PD. Healthy, active synapses are a prerequisite for non-pathological neurotransmission.

View Article and Find Full Text PDF

The Liquid Crystal Monomer 3cH2B Affects the Visual System via Neural-Cell-Specific Retinoic Acid Disruption in the Optic Tectum.

Environ Sci Technol

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.

As a newly recognized type of emerging contaminant, liquid crystal monomers (LCMs) are widely distributed in the environment and human consumptions and their effects on visual systems and the underlying mechanisms are yet to be elucidated. Therefore, this study investigated the visual-neuro influence of 3cH2B (a frequently detected LCM) under environmentally relevant concentrations in zebrafish. The findings revealed that 40 μg/L 3cH2B induced visual behaviors after 40 days of exposure, which was accompanied by decreased retinoic acid (RA) levels and retinal structural deformation in the eyes.

View Article and Find Full Text PDF

Understanding the organization and regulation of neurotransmission at the level of individual neurons and synapses requires tools that can track and manipulate transmitter-specific vesicles . Here, we present a suite of genetic tools in to fluorescently label and conditionally ablate the vesicular transporters for glutamate, GABA, acetylcholine, and monoamines. Using a structure-guided approach informed by protein topology and evolutionary conservation, we engineered endogenously tagged versions for each transporter that maintain their physiological function while allowing for cell-specific, bright, and stable visualization.

View Article and Find Full Text PDF

BLOC-1 and BORC: Complex regulators of endolysosomal dynamics.

Cell Chem Biol

August 2025

Division of Neuroscience and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Endolysosomes are dynamic organelles that undergo movement along the cytoskeleton, fusion, fission, and tubulation during their lifetime. These processes are regulated by complex molecular machineries, including the structurally related hetero-octameric complexes BLOC-1 and BORC. BLOC-1 associates with early endosomes to mediate the biogenesis of lysosome-related organelles (LROs), such as melanosomes and platelet dense bodies.

View Article and Find Full Text PDF

Loss of synaptic Munc13-1 underlies neurotransmission abnormalities in spinal muscular atrophy.

Cell Mol Life Sci

August 2025

Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.

Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease characterized by degeneration of spinal motoneurons, leading to muscle atrophy and synaptic loss. SMN functions in mRNA splicing, transport, and local translation are crucial for maintaining synaptic integrity. Within the presynaptic membrane, the active zone orchestrates the docking and priming of synaptic vesicles.

View Article and Find Full Text PDF