Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Benzo(a)pyrene (BaP) is a known carcinogen cytotoxic which can trigger extensive cellular responses. Many evidences suggest that inhibitors of poly(ADP-ribose) glycohydrolase (PARG) are potent anticancer drug candidates. However, the role of PARG in BaP carcinogenesis is less understood. Here we used PARG-deficient human bronchial epithelial cell line (shPARG cell) as an in vitro model, and investigated the role of PARG silencing in DNA methylation pattern changed by BaP. Our study shows, BaP treatment decreased global DNA methylation levels in 16HBE cells in a dose-dependent manner, but no dramatic changes were observed in shPARG cells. Further investigation revealed PARG silencing protected DNA methyltransferases (DNMTs) activity from change by BaP exposure. Interestingly, Dnmt1 is PARylated in PARG-null cells after BaP exposure. The results show a role for PARG silencing in DNA hypomethylation induced by BaP that may provide new clue for cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2014.08.146 | DOI Listing |