Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although seed-dispersal networks are increasingly used to infer the functioning of ecosystems, few studies have investigated the link between the properties of these networks and the ecosystem function of seed dispersal by animals. We investigate how frugivore communities and seed dispersal change with habitat disturbance and test whether relationships between morphological traits and functional roles of seed dispersers change in response to human-induced forest edges. We recorded interaction frequencies between fleshy fruited plants and frugivorous bird species in tropical montane forests in the Bolivian Andes and recorded functional bird traits (body mass, gape width and wing tip length) associated with quantitative (seed-removal rate) and qualitative (seed-deposition pattern) components of seed-dispersal effectiveness. We found that the abundance and richness of frugivorous birds were higher at forest edges. More fruits were removed and dispersed seeds were less clustered at edges than in the interior. Additionally, functional and interaction diversity were higher at edges than in the interior, but functional and interaction evenness did not differ. Interaction strength of bird species increased with body mass, gape width and wing tip length in the forest interior, but was not related to bird morphologies at forest edges. Our study suggests that increases in functional and interaction diversity and an even distribution of interaction strength across bird morphologies lead to enhanced quantity and tentatively enhanced quality of seed dispersal. It also suggests that the effects of species traits on ecosystem functions can vary along small-scale gradients of human disturbance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-014-3056-xDOI Listing

Publication Analysis

Top Keywords

forest edges
16
seed dispersal
12
functional interaction
12
seed dispersers
8
response human-induced
8
human-induced forest
8
seed-dispersal networks
8
bird species
8
body mass
8
mass gape
8

Similar Publications

Impact of airborne litterfall on radiocesium redistribution in areas adjacent to forests.

J Environ Radioact

September 2025

Forestry Solutions Technical Department, Asia Air Survey Co., Ltd., Kawasaki-City, Kanagawa, Japan.

Following the 2011 Fukushima Daiichi Nuclear Power Plant accident, radiocesium (Cs) was deposited across forested areas. While internal cycling is well known, lateral transfer via litterfall remains unclear. This study quantified Cs dispersal from Japanese cedar and deciduous broad-leaved forests using collectors set up to 20 m beyond the forest edge.

View Article and Find Full Text PDF

Background: Ground beetles are present in most terrestrial ecosystems and fulfil key functions, especially as many species are important predators, contributing to natural pest control in agricultural landscapes. However, intensive agriculture, which combines monocultures and synthetic inputs, has been shown to have negative effects on insect diversity and abundance. To counteract insect decline, numerous measures are being implemented and tested at national scales.

View Article and Find Full Text PDF

Improved modelling of biogenic emissions in human-disturbed forest edges and urban areas.

Nat Commun

August 2025

State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.

Biogenic volatile organic compounds (BVOCs) are critical to biosphere-atmosphere interactions, profoundly influencing atmospheric chemistry, air quality and climate, yet accurately estimating their emissions across diverse ecosystems remains challenging. Here we introduce GEE-MEGAN, a cloud-native extension of the widely used MEGAN2.1 model, integrating dynamic satellite-derived land cover and vegetation within Google Earth Engine to produce near-real-time BVOC emissions at 10-30 m resolution, enabling fine-scale tracking of emissions in rapidly changing environments.

View Article and Find Full Text PDF

In the forest ecosystems of Central European Russia, the influence of forest edges on the spatial distribution of Drosophilidae was studied for the first time. The research was conducted during the period of 2021-2022 in the Republic of Mordovia. Beer traps baited with fermented beer and sugar were used to collect Drosophilidae.

View Article and Find Full Text PDF

Examining spillover between habitat boundaries offers a key opportunity to understand how neighbouring habitats may affect each other. Although extensively studied, ecological responses at forest-grassland edges are variable across trophic levels and their underlying interactions. Thus, tackling the subject from a multitrophic perspective may yield valuable insights into how energy may flow across forest-grassland edges.

View Article and Find Full Text PDF