Ecosystem net primary productivity is thought to occur near the maximum that abiotic constraints allow; but exotic invasive plants often correlate with increased productivity. However, field patterns and experimental evidence for this come only from the non-native ranges of exotic species. Thus, we do not know if this pattern is caused by exotic invasions per se or whether successful exotic species are disproportionately productive or colonise more productive microsites.
View Article and Find Full Text PDFMutualistic interactions between fruiting plants and frugivorous animals are shaped by interaction-relevant functional traits. However, it is unclear whether 'trait matching' underlies broad-scale relationships in plant and frugivore species and their functional diversity. We integrated novel trait data and global occurrences for c.
View Article and Find Full Text PDFClimate and land-use change are key drivers of global change. Full-factorial field experiments in which both drivers are manipulated are essential to understand and predict their potentially interactive effects on the structure and functioning of grassland ecosystems. Here, we present 8 years of data on grassland dynamics from the Global Change Experimental Facility in Central Germany.
View Article and Find Full Text PDFUnderstanding how widespread species adapt to variation in abiotic conditions across their ranges is fundamental to ecology. Insight may come from studying how among-population variation (APV) in the common garden corresponds with the environmental conditions of source populations. However, there are no such studies comparing native vs non-native populations across multiple life stages.
View Article and Find Full Text PDFPhenological shifts due to changing climate are often highly species and context specific. Land-use practices such as mowing or grazing directly affect the phenology of grassland species, but it is unclear if plants are similarly affected by climate change in differently managed grassland systems such as meadows and pastures. Functional traits have a high potential to explain phenological shifts and might help to understand species-specific and land-use-specific phenological responses to changes in climate.
View Article and Find Full Text PDFWhereas temporal variability of plant phenology in response to climate change has already been well studied, the spatial variability of phenology is not well understood. Given that phenological shifts may affect biotic interactions, there is a need to investigate how the variability in environmental factors relates to the spatial variability in herbaceous species' phenology by at the same time considering their functional traits to predict their general and species-specific responses to future climate change. In this project, we analysed phenology records of 148 herbaceous species, which were observed for a single year by the PhenObs network in 15 botanical gardens.
View Article and Find Full Text PDFSci Data
August 2022
We introduce the FunAndes database, a compilation of functional trait data for the Andean flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, for a total of 105,466 entries. The database features plant-morphological attributes including growth form, and leaf, stem, and wood traits measured at the species or individual level, together with geographic metadata (i.
View Article and Find Full Text PDFPhenology has emerged as key indicator of the biological impacts of climate change, yet the role of functional traits constraining variation in herbaceous species' phenology has received little attention. Botanical gardens are ideal places in which to investigate large numbers of species growing under common climate conditions. We ask whether interspecific variation in plant phenology is influenced by differences in functional traits.
View Article and Find Full Text PDFBackground And Aims: Habitat degradation and landscape fragmentation dramatically lower population sizes of rare plant species. Decreasing population sizes may, in turn, negatively affect genetic diversity and reproductive fitness, which can ultimately lead to local extinction of populations. Although such extinction vortex dynamics have been postulated in theory and modelling for decades, empirical evidence from local extinctions of plant populations is scarce.
View Article and Find Full Text PDFTropical montane forests are threatened by uncontrolled fire events because of agricultural expansion. Consequently, deforested areas frequently are dominated by the bracken fern, Pteridium spp., for long periods, and forest regeneration is limited.
View Article and Find Full Text PDFPathogens have the potential to shape plant community structure, and thus, it is important to understand the factors that determine pathogen diversity and infection in communities. The abundance, origin, and evolutionary relationships of plant hosts are all known to influence pathogen patterns and are typically studied separately. We present an observational study that examined the influence of all three factors and their interactions on the diversity of and infection of several broad taxonomic groups of foliar, floral, and stem pathogens across three sites in a temperate grassland in the central United States.
View Article and Find Full Text PDFClimate change forces many species to move their ranges to higher latitudes or elevations. Resulting immigration or emigration of species might lead to functional changes, e.g.
View Article and Find Full Text PDFInbreeding and enemy infestation are common in plants and can synergistically reduce their performance. This inbreeding ×environment (I × E) interaction may be of particular importance for the success of plant invasions if introduced populations experience a release from attack by natural enemies relative to their native conspecifics. Here, we investigate whether inbreeding affects plant infestation damage, whether inbreeding depression in growth and reproduction is mitigated by enemy release, and whether this effect is more pronounced in invasive than native plant populations.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFHerbivory and disturbance are major drivers of biological invasions, but it is unclear how they interact to determine exotic vs. native seedling recruitment and what consequences arise for biodiversity and ecosystem functioning. Previous studies neglected the roles of different, potentially interacting, guilds of generalist herbivores such as rodents and gastropods.
View Article and Find Full Text PDFInteractions between resource and consumer species result in complex ecological networks. The overall structure of these networks is often stable in space and time, but little is known about the temporal stability of the functional roles of consumer species in these networks. We used a trait-based approach to investigate whether consumers (frugivorous birds) show similar degrees of functional specialisation on resources (plants) in ecological networks across seasons.
View Article and Find Full Text PDFIntroduced plants often face new environmental conditions in their non-native ranges. To become invasive, they need to overcome several biotic and abiotic filters that may trigger adaptive changes in life-history traits, like post-germination processes. Such early life cycle traits may play a crucial role in the colonization and establishment success of invasive plants.
View Article and Find Full Text PDFPremise Of The Study: Biological responses to climatic change usually leave imprints on the genetic diversity and structure of plants. Information on the current genetic diversity and structure of dominant tree species has facilitated our general understanding of phylogeographical patterns.
Methods: Using amplified fragment length polymorphism (AFLPs), we compared genetic diversity and structure of 384 adults of P.
Biodiversity experiments have shown that productivity usually increases with plant species richness. However, most of those studies disregarded the importance of trophic interactions to the diversity-productivity relationship, and focused on the loss of native species while ignoring invasions by exotic species. Yet, as functional complementarity and the impact of plant antagonists are likely to differ between native and exotic communities, the diversity-productivity relationship may change when native communities are invaded by exotic species.
View Article and Find Full Text PDFAlthough seed-dispersal networks are increasingly used to infer the functioning of ecosystems, few studies have investigated the link between the properties of these networks and the ecosystem function of seed dispersal by animals. We investigate how frugivore communities and seed dispersal change with habitat disturbance and test whether relationships between morphological traits and functional roles of seed dispersers change in response to human-induced forest edges. We recorded interaction frequencies between fleshy fruited plants and frugivorous bird species in tropical montane forests in the Bolivian Andes and recorded functional bird traits (body mass, gape width and wing tip length) associated with quantitative (seed-removal rate) and qualitative (seed-deposition pattern) components of seed-dispersal effectiveness.
View Article and Find Full Text PDFExotic plant invasions are thought to alter productivity and species richness, yet these patterns are typically correlative. Few studies have experimentally invaded sites and asked how addition of novel species influences ecosystem function and community structure and examined the role of competitors and/or consumers in mediating these patterns. We invaded disturbed and undisturbed subplots in and out of rodent exclosures with seeds of native or exotic species in grasslands in Montana, California and Germany.
View Article and Find Full Text PDFBackground: Agroforestry is a sustainable land use method with a long tradition in the Bolivian Andes. A better understanding of people’s knowledge and valuation of woody species can help to adjust actor-oriented agroforestry systems. In this case study, carried out in a peasant community of the Bolivian Andes, we aimed at calculating the cultural importance of selected agroforestry species, and at analysing the intracultural variation in the cultural importance and knowledge of plants according to peasants’ sex, age, and migration.
View Article and Find Full Text PDFPremise Of The Study: The role of pollen flow within and between cultivated and wild tropical crop species is little known. To study the pollen flow of cacao, we estimated the degree of self-pollination and pollen dispersal distances as well as gene flow between wild and cultivated cacao (Theobroma cacao L.).
View Article and Find Full Text PDFPremise Of The Study: Central European salt habitats are mainly restricted to the maritime coast but scattered occurrences can also be found inland. In inland habitats, human activities have caused losses and reductions in the size of natural salt sites but have also created new anthropogenic habitats around potash mining dumps colonized by halophytic species in the last 30 yr. We aimed to investigate the effects of bottlenecks, isolation, and ongoing habitat fragmentation on the genetic variation of a species commonly growing in these special habitats.
View Article and Find Full Text PDFPremise Of The Study: Knowledge on the range-wide distribution of genetic structure and diversity is required to facilitate the understanding of historical tree migration and for predicting responses to current climate change. With respect to post-glacial migration patterns known from the northern hemisphere, we tested the prediction that the southernmost populations of a subtropical tree line species have lower within-population genetic diversity and higher genetic differentiation than the central and northernmost populations.
Methods: We used AFLP to assess the genetic structure of 18 populations of the wind-pollinated Polylepis australis (Rosaceae) sampled over its entire distributional range in three Argentinean high mountain regions.