98%
921
2 minutes
20
Inbreeding and enemy infestation are common in plants and can synergistically reduce their performance. This inbreeding ×environment (I × E) interaction may be of particular importance for the success of plant invasions if introduced populations experience a release from attack by natural enemies relative to their native conspecifics. Here, we investigate whether inbreeding affects plant infestation damage, whether inbreeding depression in growth and reproduction is mitigated by enemy release, and whether this effect is more pronounced in invasive than native plant populations. We used the invader and its natural enemies as a study system. We performed two generations of experimental out- and inbreeding within eight native (European) and eight invasive (North American) populations under controlled conditions using field-collected seeds. Subsequently, we exposed the offspring to an enemy exclusion and inclusion treatment in a common garden in the species' native range to assess the interactive effects of population origin (range), breeding treatment, and enemy treatment on infestation damage, growth, and reproduction. Inbreeding increased flower and leaf infestation damage in plants from both ranges, but had opposing effects on fruit damage in native versus invasive plants. Inbreeding significantly reduced plant fitness; whereby, inbreeding depression in fruit number was higher in enemy inclusions than exclusions. This effect was equally pronounced in populations from both distribution ranges. Moreover, the magnitude of inbreeding depression in fruit number was lower in invasive than native populations. These results support that inbreeding has the potential to reduce plant defenses in , which magnifies inbreeding depression in the presence of enemies. However, future studies are necessary to further explore whether enemy release in the invaded habitat has actually decreased inbreeding depression and thus facilitated the persistence of inbred founder populations and invasion success.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434559 | PMC |
http://dx.doi.org/10.1002/ece3.4990 | DOI Listing |
Anim Biosci
September 2025
Graduate school of environmental, life and natural science, Okayama University, Okayama, Japan.
Objectives: The objective of this study was to evaluate genomic inbreeding in Japanese Black cattle and its effects on reproductive traits.
Methods: The study analyzed reproductive records and SNP data from Japanese Black cattle born between 2001 and 2005, resulting in 8,553 records from large farms. Genomic inbreeding was assessed using SNP data from 782 animals.
J Anim Ecol
September 2025
Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich, UK.
Inbreeding and the associated increase in homozygosity and potential accumulation of deleterious alleles may reduce fitness in a process known as inbreeding depression. Mechanisms to mitigate reproduction between close relatives, ranging from pre-mating mate choice to post-mating gamete selection, have evolved across taxa. In external fertilisers like Atlantic salmon (Salmo salar), where females have limited control over paternity, mechanisms of inbreeding avoidance can be expected to evolve at the gamete level.
View Article and Find Full Text PDFG3 (Bethesda)
August 2025
Department of Biology and Center for Genomics & Systems Biology, New York University, New York, New York 10012, USA.
Outbreeding populations harbor large numbers of recessive deleterious alleles that reduce the fitness of inbred individuals, and this inbreeding depression potentially shapes the evolution of mating systems, acting as a counterweight to the inherent selective advantage of self-fertilization. The population biological factors that influence inbreeding depression are numerous and often difficult to disentangle. We investigated the utility of obligately-outcrossing Caenorhabditis nematodes as models for inbreeding depression.
View Article and Find Full Text PDFBMC Plant Biol
August 2025
Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
Background: As climate change intensifies, perennial plants face more frequent drought periods throughout their lifespan. Drought stress memory in certain plants significantly enhances their adaptability to challenging environmental circumstances. However, in open-pollinated crops, this process is influenced by population plasticity due to the type and degree of genetic diversity, and inbreeding depression.
View Article and Find Full Text PDFPLoS Pathog
August 2025
Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America.
Schistosomes are obligately sexual blood flukes that can be maintained in the laboratory using freshwater snails as intermediate and rodents as definitive hosts. The genetic composition of laboratory schistosome populations is poorly understood: whether genetic variation has been purged due to serial inbreeding or retained is unclear. We sequenced 19 - 24 parasites from each of five laboratory Schistosoma mansoni populations and compared their genomes with published exome data from four S.
View Article and Find Full Text PDF