98%
921
2 minutes
20
An alkali-assisted cooperative assembly process of two different templating systems with aluminosilicate precursors is described. A highly ordered mesoporous zeolite with the 2D hexagonal symmetry mesospores and MFI zeolitic framework walls is synthesized. This method also allows the preparation of ZSM-5 with c- or b-axis-aligned mesopores. The materials have promising catalytic activities for organic reactions involving bulky molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201401486 | DOI Listing |
Acc Chem Res
September 2025
Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.
ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
Developing cost-effective spinel oxide catalysts with both high oxygen evolution reaction (OER) activity and stability is crucial for advancing sustainable clean energy conversion. However, practical applications are often hindered by the activity limitations inherent in the adsorbate evolution mechanism (AEM) and the stability limitations associated with the lattice oxygen mechanism (LOM). Herein, we demonstrate structural changes induced by phase transformation in CoMn spinel oxides, which yield more active octahedral sites with shortened intersite distance.
View Article and Find Full Text PDFChem Asian J
September 2025
Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India.
Fluorescent N-heterocyclic carbene (NHC) metal complexes are useful for various chemical and biological applications. In this study, we developed a simple strategy to synthesize BODIPY-linked NHC metal complexes involving Ag, Cu, Ni, and Pd. The synthesis began with the preparation of BODIPY-imidazolium salt as a precursor ligand.
View Article and Find Full Text PDFAdv Mater
September 2025
Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and International Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
Transmission-type radiative cooling textiles represent a vital strategy for personal thermal management. However, traditional preparation methods based on heat-induced phase separation face significant challenges regarding cost, environmental impact, and optical performance. Herein, a novel preparation method is devloped by blending mid-IR transparent solid styrene ethylene butylene styrene (SEBS) with solid polyethylene (PE), enabling the creation of pores through dissolving SEBS.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Materials Science and Engineering, Anhui University, Hefei, 230601, China.
Modulating the electronic structure of catalysts to maximize their power holds the key to address the challenges faced by zinc-iodine batteries (ZIBs), including the shuttle effect and slow redox kinetics at the iodine cathode. Herein, oxygen vacancies is innovatively introduced into CoO lattice to create high-spin-state Co active sites in nonstoichiometric CoO nanocrystals supported by carbon nanofibers (H-CoO/CNFs). This simple strategy intensifies crystal field splitting of Co 3d orbitals, optimizing the spin-orbital coupling between Co 3d orbitals and iodine species.
View Article and Find Full Text PDF