Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Activated microglia play a central role in the course of neurodegenerative diseases as they secrete cytotoxic substances which lead to neuronal cell death. Understanding the mechanisms that drive activation of microglia is essential to reverse this phenotype and to protect from neurodegeneration. With some exceptions, evidence indicates that changes in cell morphology from a star shape to a round and flat shape accompany the process of activation in microglia. In this study, we investigated the effect of adipose-tissue-derived mesenchymal stem cells (ASCs), which exert important anti-inflammatory actions, in microglia morphology. Microglia exposed to ASCs or their secreted factors (conditioned medium) underwent a cell shape change into a ramifying morphology in basal and inflammatory conditions, similar to that observed in microglia found in healthy brain. Colony-stimulating factor-1 secreted by ASCs played a critical role in the induction of this phenotype. Importantly, ASCs reversed the activated round phenotype induced in microglia by bacterial endotoxins. The ramifying morphology of microglia induced by ASCs was associated with a decrease of the proinflammatory cytokines tumor necrosis factor-α and interleukin-6, an increase in phagocytic activity, and the upregulation of neurotrophic factors and of Arginase-1, a marker for M2-like regulatory microglia. In addition, activation of the phosphoinositide-3-kinase/Akt pathway and the RhoGTPases Rac1 and Cdc42 played a major role in the acquisition of this phenotype. Therefore, these RhoGTPases emerge as key players in the ramification of microglia by anti-inflammatory agents like ASCs, being fundamental to maintain the tissue-surveying, central nervous system supporting state of microglia in healthy conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.22714DOI Listing

Publication Analysis

Top Keywords

microglia
12
mesenchymal stem
8
stem cells
8
ramification microglia
8
activation microglia
8
morphology microglia
8
ramifying morphology
8
microglia healthy
8
ascs
6
cells induce
4

Similar Publications

Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.

View Article and Find Full Text PDF

Repopulating Microglia Suppress Peripheral Immune Cell Infiltration to Promote Poststroke Recovery.

CNS Neurosci Ther

September 2025

Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

Aims: Sustained neuroinflammation following ischemic stroke impedes post-injury tissue repairment and neurological functional recovery. Developing innovative therapeutic strategies that simultaneously suppress detrimental inflammatory cascades and facilitate neurorestorative processes is critical for improving long-term rehabilitation outcomes.

Methods: We employed a microglia depletion-repopulation paradigm by administering PLX5622 for 7 days post-ischemia; followed by a 7-day withdrawal period to allow microglia repopulation.

View Article and Find Full Text PDF

Background And Hypothesis: Schizophrenia is linked to hippocampal dysfunction and microglial inflammatory activation. Our prior clinical findings revealed significantly reduced transient receptor potential vanilloid 1 (TRPV1) expression in both first-episode and recurrent schizophrenia patients, with levels inversely correlating with symptom severity, implicating TRPV1 dysfunction in disease progression. Preclinical maternal separation (MS) models recapitulate schizophrenia-like behavioral and synaptic deficits, paralleled by hippocampal microglial TRPV1 downregulation.

View Article and Find Full Text PDF

Background: Devoid of a lymphatic system, the central nervous system (CNS) relies primarily on innate immunity for protection. While these immune responses help to fight pathogens, they can also cause irreversible damage because of the CNS's limited regenerative capacity. Therefore, it is crucial to understand which CNS cells contribute to pathogen clearance but in doing so potentially damage surrounding tissue.

View Article and Find Full Text PDF

Neuroinflammation has emerged as a central and dynamic component of the pathophysiology underlying a wide range of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Far from being a secondary consequence of neuronal damage, inflammatory processes (mediated by microglia, astrocytes, peripheral immune cells, and associated molecular mediators) actively shape disease onset, progression, and symptomatology. This review synthesizes current knowledge on the cellular and molecular mechanisms that govern neuroinflammatory responses, emphasizing both shared and disease-specific pathways.

View Article and Find Full Text PDF