Kinetics of the atrazine degradation process using H2O2-UVC.

Water Sci Technol

Refinaria Abreu e Lima; Rodovia PE60, CEP 55590-000, Suape, PE, Brazil.

Published: July 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This work is concerned with the intrinsic reaction kinetic of the degradation of atrazine (ATZ) using H2O2-UVC. Experimental runs were carried out in annular photoreactor. The initial concentration of ATZ was 2.2 × 10(-2) mol m(-3) while the H2O2-ATZ molar ratio range was 0-578 mol H2O2 mol(-1) ATZ. The ATZ molecules are decomposed by means of free-radical attack (95.2%) and direct photolysis (4.8%). There is an optimal H2O2/ATZ molar ratio (ROP = 347 H2O2 mol(-1) ATZ) which maximizes the initial degradation rate and conversion at 300 s at 83% and 77%, respectively. The process is economically feasible as the values of the energy requirement, energy and H2O2 costs at ROP are 0.14 KWh m(-3) order(-1), US$0.02 kWh(-1) m(-3) and US$1.0 m(-3), respectively. The kinetic model proposed is based on Lea's reaction scheme for the H2O2 direct photolysis, the hypothesis that unknown ATZ sub-products that absorb UVC radiation are generated, and the local volumetric rate of photon absorption. The radiation transport equation was solved and the linear spherical source emission model was used to represent the lamp emission. Intrinsic reaction kinetic parameters were estimated and the model was validated. The model predicted the data in a range of 90 to 98%.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2014.158DOI Listing

Publication Analysis

Top Keywords

intrinsic reaction
8
reaction kinetic
8
molar ratio
8
h2o2 mol-1
8
mol-1 atz
8
direct photolysis
8
atz
6
kinetics atrazine
4
atrazine degradation
4
degradation process
4

Similar Publications

Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).

View Article and Find Full Text PDF

Mechanistic insights into neosilyllithium-catalyzed hydroboration of nitriles, aldehydes, and esters: a DLPNO-CCSD(T) study.

Phys Chem Chem Phys

September 2025

Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.

Over the past few years, alkali and alkaline earth metals have emerged as alternative catalysts to transition metal organometallics to catalyze the hydroboration of unsaturated compounds. A highly selective and cost-effective lithium-catalyzed method for the synthesis of an organoborane has been established based on the addition of a B-H bond to an unsaturated bond (polarized or unpolarized) using pinacolborane (HBPin). In the present work, the neosilyllithium-catalyzed hydroboration of nitriles, aldehydes, and esters has been investigated using high-level DLPNO-CCSD(T) calculations to unravel the mechanistic pathways and substrate-dependent reactivity.

View Article and Find Full Text PDF

Defect Engineering-Driven Electron Spin Polarization and Charge Transfer in MOFs for Enhanced Sonocatalytic Therapy.

Adv Mater

September 2025

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical

Sonocatalytic therapy (SCT) is a non-invasive tumor treatment modality that utilizes ultrasound (US)- activated sonocatalysts to generate reactive oxygen species (ROS), whose production critically dependent on the electronic structural properties of the catalytic sites. However, the spin state, which is a pivotal descriptor of electronic properties, remains underappreciated in SCT. Herein, a Ti-doped zirconium-based MOF (Ti-UiO-66, denoted as UTN) with ligand-deficient defects is constructed for SCT, revealing the important role of the electronic spin state in modulating intrinsic catalytic activity.

View Article and Find Full Text PDF

Ultrathin Amorphous Iron Oxide Nanosheets for Improving the Electrochemical Performance of Li-S Batteries.

Langmuir

September 2025

Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.

The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.

View Article and Find Full Text PDF

Electrochemical CO reduction reaction (CORR) has emerged as a key negative-emission technology, yet its industrial adoption hinges on cathode catalysts that deliver high selectivity and production rates at low cost. Herein, we reported a facile hydrothermal route to synthesize different scales of ZnOHF ultrathin nanowires with hybridized ZnO/ZnOHF heterointerfaces, where the 40 nm variant (NW-ZnOHF) showed a high FE of 93 % and a of -17.2 mA/cm at -1.

View Article and Find Full Text PDF