Myocyte-mediated arginase expression controls hyperargininemia but not hyperammonemia in arginase-deficient mice.

Mol Ther

1] Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [2] Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [3] The Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medi

Published: October 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human arginase deficiency is characterized by hyperargininemia and infrequent episodes of hyperammonemia that cause neurological impairment and growth retardation. We previously developed a neonatal mouse adeno-associated viral vector (AAV) rh10-mediated therapeutic approach with arginase expressed by a chicken β-actin promoter that controlled plasma ammonia and arginine, but hepatic arginase declined rapidly. This study tested a codon-optimized arginase cDNA and compared the chicken β-actin promoter to liver- and muscle-specific promoters. ARG1(-/-) mice treated with AAVrh10 carrying the liver-specific promoter also exhibited long-term survival and declining hepatic arginase accompanied by the loss of AAV episomes during subsequent liver growth. Although arginase expression in striated muscle was not expected to counteract hyperammonemia, due to muscle's lack of other urea cycle enzymes, we hypothesized that the postmitotic phenotype in muscle would allow vector genomes to persist, and hence contribute to decreased plasma arginine. As anticipated, ARG1(-/-) neonatal mice treated with AAVrh10 carrying a modified creatine kinase-based muscle-specific promoter did not survive longer than controls; however, their plasma arginine levels remained normal when animals were hyperammonemic. These data imply that plasma arginine can be controlled in arginase deficiency by muscle-specific expression, thus suggesting an alternative approach to utilizing the liver for treating hyperargininemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428413PMC
http://dx.doi.org/10.1038/mt.2014.99DOI Listing

Publication Analysis

Top Keywords

plasma arginine
12
arginase expression
8
arginase deficiency
8
chicken β-actin
8
β-actin promoter
8
hepatic arginase
8
mice treated
8
treated aavrh10
8
aavrh10 carrying
8
arginase
7

Similar Publications

Neutrophils play a complex role in the pathogenesis of chronic liver disease and have been linked to both liver damage and injury resolution. Recent reports propose that neutrophils drive liver injury and fibrosis through the formation of neutrophil extracellular traps (NETs). This study tests the hypothesis that the enzyme peptidyl arginine deiminase-4 (PAD4) drives NET formation and liver fibrosis in experimental chronic liver injury.

View Article and Find Full Text PDF

Background: Serum copeptin (sCoP) is used as a surrogate for plasma arginine vasopressin (pAVP) measurement in humans.

Objective: To measure pAVP and sCoP at rest and after osmotic- and non-osmotic stimulation testing in dogs.

Animals: Eight young castrated/spayed healthy research Beagles, eight young intact dogs, and eight old neutered healthy client-owned dogs.

View Article and Find Full Text PDF

Essential amino acids in celiac disease: key roles in immunogenicity, pathogenesis, and therapeutic approaches.

Crit Rev Clin Lab Sci

September 2025

Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Celiac disease (CD) is a chronic autoimmune disorder triggered by gluten ingestion, causing intestinal damage and systemic complications. Essential amino acids (EAAs) play crucial roles in immune function, intestinal integrity, and metabolic regulation; however, their malabsorption in CD contributes to disease progression. Tryptophan dysregulation may influence mood disorders in CD, while phenylalanine and lysine are linked to immune activation and gluten modification.

View Article and Find Full Text PDF

Acute circadian misalignment, such as that induced by a single episode of jet lag, can leave molecular traces even after behavioral rhythms appear to recover. Here, we applied an integrated multi-omics approach-combining liver transcriptomics and plasma metabolomics-to characterize residual signatures on the 7th day after a single 6-h phase advance in male mice. Our data revealed significant alterations, particularly in the core clock genes Bmal1 and Cry1, and the metabolites l-arginine and SM(d18:1/18:1(11Z)), with notable differences at Zeitgeber Time 0 (ZT0).

View Article and Find Full Text PDF

Amino acid (AA)-based nanoparticles (NPs) hold promise in cancer therapy due to their excellent biocompatibility and the various therapeutic functions derived from AA monomers. Here, we developed a universal one-step method to synthesize AA-based NPs. We then constructed L-Arginine (L-Arg)/calcium phosphate (CaP) NPs to enhance cancer therapy through synergistic calcium overload to induce apoptosis and immunogenic cell death.

View Article and Find Full Text PDF