Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, we demonstrate the applicability of coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy for quantitative chemical imaging of saturated and unsaturated lipids in human stem-cell derived adipocytes. We compare dual-frequency/differential CARS (D-CARS), which enables rapid imaging and simple data analysis, with broadband hyperspectral CARS microscopy analyzed using an unsupervised phase-retrieval and factorization method recently developed by us for quantitative chemical image analysis. Measurements were taken in the vibrational fingerprint region (1200-2000/cm) and in the CH stretch region (2600-3300/cm) using a home-built CARS set-up which enables hyperspectral imaging with 10/cm resolution via spectral focussing from a single broadband 5 fs Ti:Sa laser source. Through a ratiometric analysis, both D-CARS and phase-retrieved hyperspectral CARS determine the concentration of unsaturated lipids with comparable accuracy in the fingerprint region, while in the CH stretch region D-CARS provides only a qualitative contrast owing to its non-linear behavior. When analyzing hyperspectral CARS images using the blind factorization into susceptibilities and concentrations of chemical components recently demonstrated by us, we are able to determine vol:vol concentrations of different lipid components and spatially resolve inhomogeneities in lipid composition with superior accuracy compared to state-of-the art ratiometric methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026891PMC
http://dx.doi.org/10.1364/BOE.5.001378DOI Listing

Publication Analysis

Top Keywords

quantitative chemical
12
hyperspectral cars
12
cars microscopy
8
chemical imaging
8
unsaturated lipids
8
fingerprint region
8
stretch region
8
cars
7
hyperspectral
5
hyperspectral differential
4

Similar Publications

Physicochemical Property Models for Poly- and Perfluorinated Alkyl Substances and Other Chemical Classes.

J Chem Inf Model

September 2025

United States Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, North Carolina 27711, United States.

To assess environmental fate, transport, and exposure for PFAS (per- and polyfluoroalkyl substances), predictive models are needed to fill experimental data gaps for physicochemical properties. In this work, quantitative structure-property relationship (QSPR) models for octanol-water partition coefficient, water solubility, vapor pressure, boiling point, melting point, and Henry's law constant are presented. Over 200,000 experimental property value records were extracted from publicly available data sources.

View Article and Find Full Text PDF

Computational modeling for PPE filtration: Informed by material characterization, microbial penetration, and particle mechanics.

J Occup Environ Hyg

September 2025

Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, US Food and Drug Administration (FDA), Oak Ridge, Tennessee.

This work assesses the current characterization framework of single-use personal protective equipment (PPE) per recognized consensus standards and presents a novel quantitative approach to refining characterization of barrier materials and predicting PPE performance. Scanning electron microscopy (SEM) and image analysis software (Diameter J) were used to examine the microscopic fiber and pore structure of filter layers of surgical N95 filtering facepiece respirators, before and after exposure to chemicals used in decontamination modalities (vaporized hydrogen peroxide or ozone). The effect of porosity on penetration was assessed by bacterial filtration efficiency (BFE) testing.

View Article and Find Full Text PDF

We present multimodal confocal Raman micro-spectroscopy (RS) and tomographic phase microscopy (TPM) for quick morpho-chemical phenotyping of human breast cancer cells (MDA-MB-231). Leveraging the non-perturbative nature of these advanced microscopy techniques, we captured detailed morpho-molecular data from living, label-free cells in their native physiological environment. Human bias-free data processing pipelines were developed to analyze hyperspectral Raman images (spanning Raman modes from 600 cm to 1800 cm, which uniquely characterize a wide range of molecular bonds and subcellular structures), as well as morphological data from three-dimensional refractive index tomograms (providing measurements of cell volume, surface area, footprint, and sphericity at nanometer resolution, alongside dry mass and density).

View Article and Find Full Text PDF

The ameliorative effect of Lactiplantibacillus plantarum SCS2 on DSS-induced murine colitis.

Arch Microbiol

September 2025

School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.

The inhibitory effects of Lactiplantibacillus plantarum on inflammatory responses are known, but its action mechanisms in oxidative stress, immunomodulation, and intestinal homeostasis remain of interest. Accordingly, we investigated the protective effects of Lactiplantibacillus plantarum SCS2 (L. plantarum SCS2) against sodium dextran sulfate (DSS)-induced colitis in mice as well as elucidated its impact on inflammation, oxidative stress, and intestinal microbiota.

View Article and Find Full Text PDF

The effect of shape and size of embolic agents on embolization phenomena has been discussed clinically for transcatheter arterial chemoembolization (TACE). We numerically discussed the unique embolization behavior of new deformable toroidal microparticles in blood vessels by computational fluid dynamics simulations. We employed an Eulerian-Eulerian (full Eulerian) fluid-structure interaction (FSI) method to analyze the flow and deformation behaviors of a deformable torus in a cylindrical pipe.

View Article and Find Full Text PDF