98%
921
2 minutes
20
We reported previously that c-kit ligation by membrane-bound stem cell factor (mSCF) boosts IL-6 production in dendritic cells (DCs) and a Th17-immune response. However, Th17 establishment also requires heterodimeric IL-23, but the mechanisms that regulate IL-23 gene expression in DCs are not fully understood. We show that IL-23p19 gene expression in lung DCs is dependent on mSCF, which is regulated by the metalloproteinase MMP-9. Th1-inducing conditions enhanced MMP-9 activity, causing cleavage of mSCF, whereas the opposite was true for Th17-promoting conditions. In MMP-9(-/-) mice, a Th1-inducing condition could maintain mSCF and enhance IL-23p19 in DCs, promoting IL-17-producing CD4(+) T cells in the lung. Conversely, mSCF cleavage from bone marrow DCs in vitro by rMMP-9 led to reduced IL-23p19 expression under Th17-inducing conditions, with dampening of intracellular AKT phosphorylation. Collectively, these results show that the c-kit/mSCF/MMP-9 axis regulates IL-23 gene expression in DCs to control IL-17 production in the lung.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063408 | PMC |
http://dx.doi.org/10.4049/jimmunol.1303183 | DOI Listing |
Nanotoxicology
September 2025
Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
Mol Ther Methods Clin Dev
June 2025
Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.
Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Shanghai Vitalgen BioPharma Co., Ltd., Shanghai 201210, China.
Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder caused by loss-of-function mutations in the gene, characterized by crystal-like lipid deposits in the retina, progressive photoreceptor loss, and retinal pigment epithelium (RPE) deterioration. Currently, there are no approved treatments for BCD. VGR-R01, an investigational gene therapy, uses subretinal administration of recombinant adeno-associated virus type 8 (AAV8) vector to deliver the human CYP4V2 gene.
View Article and Find Full Text PDF