Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

By utilizing the phase change properties of vanadium dioxide (VO2), we have demonstrated the tuning of the electric and magnetic modes of split ring resonators (SRRs) simultaneously within the near IR range. The electric resonance wavelength is blue-shift about 73 nm while the magnetic resonance mode is red-shifted about 126 nm during the phase transition from insulating to metallic phases. Due to the hysteresis phenomenon of VO2 phase transition, both the electric and magnetic modes shifts are hysteretic. In addition to the frequency shift, the magnetic mode has a trend to vanish due to the fact that the metallic phase VO2 has the tendency to short the gap of SRR. We have also demonstrated the application of this active metamaterials in tunable surface-enhanced Raman scattering (SERS), for a fixed excitation laser wavelength, the Raman intensity can be altered significantly by tuning the electric mode frequency of SRR, which is accomplished by controlling the phase of VO2 with an accurate temperature control.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.002989DOI Listing

Publication Analysis

Top Keywords

active metamaterials
8
tunable surface-enhanced
8
surface-enhanced raman
8
raman scattering
8
tuning electric
8
electric magnetic
8
magnetic modes
8
phase transition
8
phase vo2
8
phase
5

Similar Publications

Flexibility-Induced Robustness in Molecular Catalysts for Electrocatalytic CO Reduction.

J Am Chem Soc

September 2025

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

CO electroreduction to produce fuels and chemicals is of great significance. Molecular catalysts offer valuable advantages in light of their well-defined active sites and tunable structural and electronic properties. However, their stability is often compromised by rigid conjugated structures.

View Article and Find Full Text PDF

A geometric condition for robot-swarm cohesion and cluster-flock transition.

Proc Natl Acad Sci U S A

September 2025

Department of Artificial Intelligence, Donders Center for Cognition, Radboud University, Nijmegen, GD 6525, Netherlands.

We present a geometric design rule for size-controlled clustering of self-propelled particles. We show that active particles that tend to rotate under an external force have an intrinsic, signed parameter with units of curvature which we call curvity, that can be derived from first principles. Experiments with robots and numerical simulations show that properties of individual robots (radius and curvity) control pair cohesion in a binary system, and the stability of flocking and self-limiting clustering in a swarm, with applications in metamaterials and in embodied decentralized control.

View Article and Find Full Text PDF

Constructing Double Heterojunctions on 1T/2H-MoS@CoS Electrocatalysts for Regulating LiO Formation in Lithium-Oxygen Batteries.

Nanomicro Lett

September 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China.

CoS electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction (OER) activity, yet challenges remain in fabricating rechargeable lithium-oxygen batteries (LOBs) due to their poor OER performance, resulting from poor electrical conductivity and overly strong intermediate adsorption. In this work, fancy double heterojunctions on 1T/2H-MoS@CoS (1T/2H-MCS) were constructed derived from the charge donation from Co to Mo ions, thus inducing the phase transformation of MoS from 2H to 1T. The unique features of these double heterojunctions endow the 1T/2H-MCS with complementary catalysis during charging and discharging processes.

View Article and Find Full Text PDF

Precise, timely, and personalized in vivo thrombus monitoring is critical for improving the treatment effectiveness and clinical outcomes of cardiovascular diseases (CVDs). Terahertz (THz) spectroscopy has become increasingly important as a novel tool in biomedical engineering due to its rapid analysis ability, high temporal resolution, and label-free measurement modality. However, achieving high thrombus sensing performance in real blood environments remains a significant challenge.

View Article and Find Full Text PDF

Light-driven lattice soft microrobot with multimodal locomotion.

Nat Commun

August 2025

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.

Untethered microrobots hold significant promise in fields such as bionics, biomedicine, and micromechanics. However, replicating the diverse movements of natural microorganisms in artificial microrobots presents a considerable challenge. This paper introduces a laser-based approach that utilizes lattice metamaterials to enhance the deformability of hydrogel-based microrobots, resulting in untethered light-driven lattice soft microrobots (LSMR).

View Article and Find Full Text PDF