98%
921
2 minutes
20
An intriguing enigma in molecular biology is how genes within a single genome are differentially expressed in different cell types of a multicellular organism, or in response to different developmental or environmental queues in a single cell type. Quantification of transcript levels on a genome-wide scale, often termed transcript profiling, provides a powerful approach to identifying protein-coding and non-coding RNAs functionally relevant to a given biological process. Indeed, transcriptome analysis has been a key area of biological inquiry for decades and successfully produced discoveries in a multitude of processes and disease states, and in an increasingly large number of organisms. The evolution of technologies with increasing levels of informational content, ranging from hybridization-based technologies such as Northern blot analysis and microarrays to tag/polymerase chain reaction (PCR)- and sequence-based technologies including differential display and SAGE, along with the next-generation sequencing, has provided hope for revealing the molecular details of biological systems as they respond to change. This review is an overview of selected high throughput tag/PCR-based methods for genome-wide expression profiling amenable to high-throughput automated operation in any standard laboratory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-014-1641-0 | DOI Listing |
J Anim Sci
September 2025
Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
University Sousse, Faculty of Medicine "Ibn El-Jazzar", Department of Medical Genetics, Sousse, Tunisia.
The global epidemic of overweight and obesity is closely linked to the development of chronic kidney disease (CKD), with extremely obese individuals facing a particularly high risk. This study aimed to assess the relationship between lipid profile levels, SIRT1 expression, and RNA-34a-5P in the regulation of blood lipid levels among severely obese individuals with renal diseases. Conducted over six months in three specialized hospitals, the study included 100 participants divided into two groups: 50 obese individuals with renal diseases and 50 obese controls without renal problems.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Department of Biology, College of Education for Pure Sciences, University of Kerbala, Kerbala, Iraq.
Gastric cancer is one of the causes of deaths related to cancer across the globe and both genetic and environmental factors are the most prominent. Causes of its pathogenesis. This paper researches the expression of the C-FOS gene.
View Article and Find Full Text PDFArch Microbiol
September 2025
College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China.
The esterase gene encoding EstJN1 of Clostridium butyricum, which was isolated from the pit cellar of Chinese liquor facility, was expressed. EstJN1 was identified as a novel GDSL esterase belonging to family II. The enzyme demonstrated a marked substrate preference for p-nitrophenyl butyrate, with optimal activity at a temperature of 40 ℃ and a pH of 7.
View Article and Find Full Text PDFArch Microbiol
September 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
Endophytic fungi are nonpathogenic fungi that live symbiotically in the interior of healthy plant tissues and form mutualistic associations with their hosts. These fungi are critically involved in promoting plant development, strengthening plant uptake of nutrients, and improving plant resistance to biotic and abiotic stress conditions. Endophytic fungi improve plant growth by synthesizing phytohormones (e.
View Article and Find Full Text PDF