N-methyl-D-aspartate receptors amplify activation and aggregation of human platelets.

Thromb Res

Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia; Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia.

Published: May 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Glutamate is stored in platelet dense granules and large amounts (>400 μM) are released during thrombus formation. N-methyl-d-aspartate glutamate receptors (NMDARs) have been shown in platelets but their roles are unclear.

Materials And Methods: Platelet activation indices (CD62P expression and PAC-1 binding) and platelet aggregation were tested in the presence of well-characterized agonists (glutamate, NMDA, glycine) and antagonists (MK-801, memantine, AP5) of neuronal NMDARs. Expression of NMDAR subunits in platelets was determined.

Results: NMDAR agonists facilitated and NMDAR antagonists inhibited platelet activation and aggregation. Low concentrations (100 μM) of MK-801 and memantine reduced adrenaline-induced CD62P expression by 47 ± 5 and 42 ± 3%, respectively, and inhibited adrenaline-induced platelet aggregation by 17 ± 6 and 25 ± 5%, respectively (P<0.05). AP5 caused less inhibition of platelet function, requiring concentrations of at least 250 μM to inhibit aggregation. NMDAR agonists did not aggregate platelets by themselves but enhanced aggregation initiated by low concentrations of ADP. Exogenous glutamate helped reverse inhibition of platelet aggregation by riluzole (inhibitor of glutamate release). Compared with seven possible NMDAR subunits in neurons, human platelets contained four: GluN1, GluN2A, GluN2D and GluN3A, a combination rarely seen in neurons. The presence of NMDAR transcripts in platelets implied platelet ability to regulate NMDAR expression presumably 'on demand'. Flow cytometry and electron microscopy demonstrated that in non-activated platelets, NMDAR subunits were contained inside platelets but relocated onto platelet blebs, filopodia and microparticles after platelet activation.

Conclusions: Our results support an active role for NMDARs in platelets, in a process that involves activation-dependent receptor relocation towards the platelet surface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.thromres.2014.02.011DOI Listing

Publication Analysis

Top Keywords

activation aggregation
8
platelet activation
8
cd62p expression
8
platelet aggregation
8
mk-801 memantine
8
platelet
5
n-methyl-d-aspartate receptors
4
receptors amplify
4
amplify activation
4
aggregation
4

Similar Publications

Low-potential pyrene-coordinated MOFs and CoSOH nanosheets: An electrochemiluminescence energy resonance transfer system for aflatoxin B1 detection.

Anal Chim Acta

November 2025

The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China; Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China

Background: Of the mycotoxins, aflatoxin is the most significant. The detection of aflatoxin B1 (AFB1) is crucial for ensuring food safety, as this highly carcinogenic toxin readily contaminates crops such as grains and nuts, and timely detection can effectively prevent associated health risks. The selection of luminophores is of paramount importance in the detection of ECL (electrochemiluminescence).

View Article and Find Full Text PDF

The Significance of the Amino Acid at Position 2561 in the C4 Domain of Von Willebrand Factor.

J Thromb Haemost

September 2025

Department of Immunology and Inflammation, Centre for Haematology, Imperial College, London, UK. Electronic address:

Background: The VWF Phe2561Tyr variant has been previously shown to exhibit gain-of-function like activity and increase the risk of repeated MI in patients below 55 years of age. It was hypothesised that altered stem dynamics enhanced the responsiveness of the molecule to shear stress. In this study we investigated the evolutionary significance of the amino acid at position 2561 and functional impacts of variants at this site.

View Article and Find Full Text PDF

Prolyl endopeptidase (PREP) drives neurodegenerative diseases through dual mechanisms involving enzymatic activity and protein-protein interactions (PPIs), yet current inhibitors predominantly target single pathways Prolyl endopeptidase (PREP) fuels neurodegeneration via enzymatic cleavage and pathological PPIs, yet current inhibitors usually target only one facet. In this study, leveraging our developed high-sensitivity and high-specificity near-infrared fluorescent probe Z-GP-ACM, we established and validated a screening platform for PREP inhibitors with mouse brain S9 instead of the human recombinant PREP. Screening a library of 110 natural compounds identified a series of flavonoid derivatives (FV64-FV68) as potent PREP inhibitors, with FV67 and FV68 exhibiting particularly strong inhibition (IC values of 0.

View Article and Find Full Text PDF

Ultrasound-microwave-enzyme synergistic extraction of Brassica rapa L. polysaccharides: Structural characterization, in vitro fecal fermentation dynamics, and gut microbiota modulation.

Int J Biol Macromol

September 2025

State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China. Electronic address:

This study investigated fermentation-induced alterations in the structural and physicochemical properties of Brassica rapa L. polysaccharide (BRL-G) and their effects on gut microbiota composition. An in vitro continuous bioreactor system was used, combining ultrasound-microwave-assisted enzymatic extraction with fecal microbiota co-culture.

View Article and Find Full Text PDF

Surfactant-enhanced aquifer remediation (SEAR) is an effective strategy for removing dense non-aqueous phase liquids (DNAPLs) from contaminated groundwater. While Gemini surfactants possess unique dimeric structures and excellent physicochemical properties, the role of hydrophobic chain length in governing their solubilization performance has not been systematically clarified. Here, five sugar-based anionic-nonionic Gemini surfactants (SANG 06, 08, 09, 10, and 13) with different hydrophobic chain lengths were synthesized and evaluated.

View Article and Find Full Text PDF