98%
921
2 minutes
20
Nonlinear multiphoton absorption induced by focusing near infrared (NIR) femtosecond (fs) laser pulses into a transparent cornea allows surgery on neovascular structures with minimal collateral damage. In this report, we introduce an fs laser-based microsurgery for selective treatment of rat corneal neovascularizations (in vivo). Contiguous tissue effects are achieved by scanning a focused laser pulse below the corneal surface with a fluence range of 2.2-8.6 J/cm(2). The minimal visible laser lesion (MVL) threshold determined over the corneal neovascular structures was found to be 4.3 J/cm(2). Histological and optical coherence tomography examinations of the anterior segment after laser irradiations show localized degeneration of neovascular structures without any unexpected change in adjacent tissues. Furthermore, an approximately 30 % reduction in corneal neovascularizations was observed after 5 days of fs laser exposure. The femtosecond laser is thus a promising tool for minimally invasive intrastromal surgery with the aid of a significantly smaller and more deterministic photodisruptive energy threshold for the interaction between the fs laser pulse and corneal neovascular structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074465 | PMC |
http://dx.doi.org/10.1007/s10103-014-1545-0 | DOI Listing |
Biomater Adv
August 2025
Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta 577451, Karnataka, India. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor prognosis and chemoresistance. Nano-bioconjugates, due to their enhanced surface-to-volume ratio, offer significant potential in cancer therapy. In this study, we synthesized ZnO nanoparticles (NPs) using solution combustion method and exhibited a particle size range of 20-70 nm as confirmed by TEM analysis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210008, China.
Pterygium is a common ocular surface lesion, and postoperative recurrence remains a major challenge due to insufficient therapeutic strategies targeting fibroblast proliferation and inflammation. Fibrinogen hydrogel (Fibrin glue, FG), a bioadhesive hydrogel, is widely used in pterygium surgery to secure conjunctival autografts. However, its low adhesion often leads to graft detachment, hindering effective repair.
View Article and Find Full Text PDFCell Signal
September 2025
School of Optometry and Vision Science, University of New South Wales, Kensington, NSW 2052, Australia. Electronic address:
Vascular endothelial growth factor (VEGF), a pro-angiogenic molecule, supports blood vessel growth during wound healing but also drives pathological neovascularization in blinding eye diseases such as neovascular age-related macular degeneration (nAMD). Dimethyl fumarate (DMFu), an FDA-approved drug for multiple sclerosis, has previously shown promising anti-inflammatory properties in retinal pigment epithelium, a crucial structure disrupted by nAMD. Here, we extend the multi-phenotypic therapeutic potential of DMFu by discerning the anti-angiogenic capabilities of DMFu in choroidal and retinal endothelial cells.
View Article and Find Full Text PDFBiology (Basel)
July 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
Natural products, characterized by their structural novelty, multi-target capabilities, and favorable toxicity profiles, represent a prominent reservoir for the discovery of innovative anticancer therapeutics. In the current investigation, we identified ajuforrestin A, a diterpenoid compound extracted from Maxim, as a potent agent against lung cancer. In vitro, this compound markedly curtailed the proliferation of A549 cells.
View Article and Find Full Text PDFJ Cancer Res Ther
September 2025
Department of Interventional Ultrasound, The Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China.
Background: Noninvasive and functional tumor vascular system imaging at the microscopic scale is greatly significant. Using animal models, we investigated the feasibility of using superresolution ultrasound (SR-US) imaging to visualize and quantify the microvessels during tumor growth.
Methods: This study established nine rabbit VX2 tumor models.