Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To explore the association of the androgenic receptor (AR) CAG repeats with the risks of benign prostatic hyperplasia (BPH) and prostate cancer (PCa).

Methods: We searched the major databases at home and abroad for the literature addressing the correlation of the AR gene CAG repeats with BPH and PCa. Based on the results of heterogeneity tests, we used the M-H fixed effect model and random effect model to pool the odds ratio (OR) effect size. We evaluated publication bias by Begg and Egger bias analysis, investigated the association of CAG repeats with the risks of BPH and PCa by systematic review, and stratified their relationship according to the races of the patients.

Results: Based on the selection criteria, 4 of the 29 identified studies were included, with 485 cases of BPH, 767 cases of PCa, and 709 controls. There was no heterogeneity between the BPH and control groups, and no correlation between short CAG repeats and BPH after pooling the odds ratio (OR) effect size. Heterogeneity was found among the BPH, PCa and control groups. Random effects model suggested an association of short CAG repeats with the risk of PCa (OR(PCa/control) = 1.45, OR(PCa/BPH) = 1.86, OR(PCa/(BPH + control)) = 1.66), while subgroup analysis with racial stratification indicated inter-ethnic differences between the two. Begg and Egger bias analysis showed no significant publication bias.

Conclusion: Shorter CAG repeats are positively correlated with the risk of PCa but not with that of BPH.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cag repeats
28
repeats risks
12
bph pca
12
receptor cag
8
risks benign
8
benign prostatic
8
prostatic hyperplasia
8
prostate cancer
8
bph
8
repeats bph
8

Similar Publications

Membranes as targets and modifiers of mutant huntingtin aggregation.

Trends Biochem Sci

September 2025

Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA. Electronic address:

Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene, resulting in an expanded polyglutamine (polyQ) tract in HTT protein. Expanded polyQ tracts cause mutant HTT (mHTT) to aggregate and accumulate as cellular inclusions. Recent studies highlight the interactions between mHTT and different cellular membranes that contribute to HD pathogenesis.

View Article and Find Full Text PDF

was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.

View Article and Find Full Text PDF

Background: Huntington disease-like 2 (HDL2) is an autosomal dominant disorder caused by an abnormal CAG/CTG repeat in exon 2A of junctophilin-3. This is the most common Huntington's Disease phenocopy and is characterized by psychiatric, cognitive, and movement disorders. This study aimed to describe the clinical phenotype of HDL2 patients in Brazil and compare the findings with those in the literature.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and psychiatric disturbances. It is caused by CAG repeat expansions in the HTT gene, resulting in the formation of mutant huntingtin protein that aggregates and disrupts neuronal function. This review outlines the pathogenesis of HD, including genetic, molecular, and environmental factors.

View Article and Find Full Text PDF

Spinal and bulbar muscular atrophy (SBMA) is a CAG/polyglutamine (polyQ) repeat expansion disorder in which the mutant androgen receptor (AR) protein triggers progressive degeneration of the neuromuscular system in men. As the misfolded polyQ AR is the proximal mediator of toxicity, therapeutic efforts have focused on targeting the mutant protein, but these prior efforts have met with limited success in SBMA patients. Here, we examine the efficacy of small molecule AR proteolysis-targeting chimera (PROTAC) degraders that rapidly and potently promote AR ubiquitination and degradation by the proteasome.

View Article and Find Full Text PDF