98%
921
2 minutes
20
Growth, end-product synthesis, enzyme activities, and transcription of select genes associated with the "malate shunt," pyruvate catabolism, H2 synthesis, and ethanol production were studied in the cellulolytic anaerobe, Clostridium thermocellum ATCC 27405, during open-batch fermentation of cellobiose to determine the effect of elevated N2 and H2 gas sparging on metabolism using a 14-L fermenter with a 7-L working volume. The metabolic shift from acetate, H2, and CO2 to ethanol and formate in response to high H2 versus high N2 sparging (20 mL s(-1)) was accompanied by (a) a 2-fold increase in nicotinamide adenine dinucleotide (NADH)-dependent alcohol dehydrogenase (Adh) activity, (b) a 10-fold increase in adhE transcription, and (c) a 3-fold decrease in adhZ transcription. A similar, but less pronounced, metabolic shift was also observed when the rate of N2 sparging was decreased from 20 to 2 mL s(-1), during which (a) NADH-dependent ADH and pyruvate: ferredoxin oxidoreductase (PFOR) activities increased by ∼1.5-fold, (b) adhY transcription increased 6-fold, and (c) transcription of selected pfor genes increased 2-fold. Here we demonstrate that transcription of genes involved in ethanol metabolism is tightly regulated in response to gas sparging. We discuss the potential impacts of dissolved H2 on electron carrier (NADH, NADPH, ferredoxin) oxidation and how these electron carriers can redirect carbon and electron flux and regulate adhE transcription.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-013-5500-y | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFBMC Vet Res
September 2025
Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
This study investigated the impact of dietary zeolite supplementation on growth, cecal microbiota and digesta viscosity, digestive enzymes, carcass traits, blood constituents, and antioxidant parameters of broilers. A completely randomized design was used with 240 one-day-old broiler chicks randomly assigned to three dietary treatments (0%, 1.5%, and 3% zeolite as a feed additive) with four replicates of 20 chicks each.
View Article and Find Full Text PDFMicrob Cell Fact
September 2025
Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31257, Egypt.
Background And Aim: Synthetic dyes in the textile industry pose risks to human health and environmental safety. The current study aims to examine the efficacy of a novel esterase derived from an endophyte fungus in decolorizing diverse dyes, focusing on its production, purification, optimization, and characterization.
Results: Trichoderma afroharzianum AUMC16433, a novel fungal endophyte with esterase-producing ability, was first detected from the cladodes of Opuntia ficus indica by ITS-rRNA sequencing.
BMC Plant Biol
September 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.
View Article and Find Full Text PDFSci China Life Sci
September 2025
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
Diurnal floret opening and closure (DFOC) is essential for rice reproductive development and hybrid breeding, yet transcriptional dynamics and underlying regulatory networks remain poorly characterized. Here, we conducted high-temporal-resolution transcriptomic analyses of lodicules to dissect DFOC regulatory networks in two japonica rice cultivars. Analysis of differentially expressed genes (DEGs) uncovered core genes shared by both cultivars, primarily associated with jasmonic acid (JA) signaling and cell wall remodeling.
View Article and Find Full Text PDF