Thyroglobulin suppresses thyroid-specific gene expression in cultures of normal but not neoplastic human thyroid follicular cells.

J Clin Endocrinol Metab

Laboratory of Molecular Diagnostics (Y.I., Y.L., K.S.), Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan; Thyroid Disease Institute (K.Y., M.K., Y.S., E.Y, T.Y.), Kanaji Thyroid Hospital, Tokyo 114-0015, Japan; and Department o

Published: April 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Context: It was shown in the rat thyroid that thyroglobulin (Tg) stored in the follicular lumen is a potent regulator of thyroid-specific gene expression to maintain the function of individual follicles. However, the actions of Tg as a regulatory molecule in human thyroid have not been studied.

Objective: Our objective was to determine the effect of Tg on gene expression in normal and diseased human thyroid and to examine whether the proposed model of negative-feedback autocrine regulation of thyroid function by Tg is applicable in the human as well as the rat.

Design: Primary cultures of human thyrocytes were established from normal thyroid, Graves' disease thyroid, adenomatous goiter, follicular adenoma, and papillary carcinoma tissues obtained during surgery. Cells were stimulated with physiologic (ie, follicular) concentrations of Tg, and mRNA and protein expression of genes involved in thyroid hormonogenesis were evaluated. The effects of Tg on thyroid-specific gene expression were also assessed in 2 human papillary carcinoma cell lines.

Results: Transcript levels of genes participating in thyroid hormone biosynthesis were significantly reduced by Tg in thyrocyte cultures derived from normal and Graves' thyroid, but not in cultures derived from thyroid neoplasms and adenomatous goiter.

Conclusion: It was confirmed that Tg acts as a negative-feedback regulator of gene expression in human thyrocytes, suggesting that Tg signaling may constitute a common mechanism for maintaining thyroid homeostasis in species with follicular thyroid morphology. However, certain diseases of intrinsic thyroid overgrowth appear to be associated with an escape from the regulatory mechanism of Tg.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2013-3682DOI Listing

Publication Analysis

Top Keywords

gene expression
20
thyroid
14
thyroid-specific gene
12
human thyroid
12
human thyrocytes
8
papillary carcinoma
8
cultures derived
8
human
7
expression
6
gene
5

Similar Publications

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

A myotropic AAV vector combined with skeletal muscle -regulatory elements improve glycogen clearance in mouse models of Pompe disease.

Mol Ther Methods Clin Dev

June 2025

Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.

Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.

View Article and Find Full Text PDF

Species-specific gene expression manipulation in humanized livers of chimeric mice via siRNA-encapsulated lipid nanoparticle treatment.

Mol Ther Methods Clin Dev

June 2025

Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.

Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.

View Article and Find Full Text PDF

Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder caused by loss-of-function mutations in the gene, characterized by crystal-like lipid deposits in the retina, progressive photoreceptor loss, and retinal pigment epithelium (RPE) deterioration. Currently, there are no approved treatments for BCD. VGR-R01, an investigational gene therapy, uses subretinal administration of recombinant adeno-associated virus type 8 (AAV8) vector to deliver the human CYP4V2 gene.

View Article and Find Full Text PDF