98%
921
2 minutes
20
α-synuclein (AS) is a small (140 amino acids), abundant presynaptic protein, which lacks a unique secondary structure in aqueous solution. Amyloid aggregates of AS in dopaminergic neurons of the midbrain are the hallmark of Parkinson's disease (PD). The process of aggregation involves a series of complex structural transitions from innocuous monomeric AS to oligomeric, presumably neurotoxic, forms and finally to fibril formation. Despite its potential importance for understanding PD pathobiology and devising rational, targeted therapeutic strategies, the details of the aggregation process remain largely unknown. Methodologies and reagents capable of controlling the aggregation kinetics are essential tools for the investigation of the molecular mechanisms of amyloid diseases. In this work, we investigated the influence of citrate-capped gold nanoparticles on the aggregation kinetics of AS using a fluorescent probe (MFC) sensitive to the polarity of the molecular microenvironment via excited state intramolecular proton transfer (ESIPT). The particular effects on the half time, nucleation time, and growth rate were ascertained. Gold nanoparticles produced a strong acceleration of protein aggregation with an influence on both the nucleation and growth phases of the overall mechanism. The effects were dependent on the size and concentration of the nanoparticles, being strongest for nanoparticles 10 nm in diameter, which produced a 3-fold increase in the overall aggregation rate at concentrations as low as 20 nM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl403490e | DOI Listing |
J Agric Food Chem
September 2025
Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
Adulterated yohimbine (YHB) in food poses a risk to public health, making it imperative to develop fast and sensitive detection methods. In this study, computational-chemistry-based prediction was employed to design YHB haptens for generating the high-affinity monoclonal antibody Yohi-4A7, which exhibited an optimal half-inhibitory concentration (IC) of 1.69 ng/mL against YHB.
View Article and Find Full Text PDFAnal Chem
September 2025
Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China.
Electroactive bacteria (EAB) hold great promise for the development of electrochemical biosensors given their unique ability to transfer electrons extracellularly via specialized pathways, a process termed extracellular electron transfer (EET). Ongoing research aims to overcome current limitations and fully harness the potential of EABs for high-performance biosensing applications. Herein, we report the fabrication of an electrochemical microsensor based on biomineralized electroactive bacteria, specifically MR-1.
View Article and Find Full Text PDFIndian J Nucl Med
August 2025
Department of Physics, Shi.C., Islamic Azad University, Shiraz, Iran.
Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Türkiye.
A novel phthalonitrile derivative (a) containing three functional groups (hexyl, aminated ester, phenoxy) was synthesized and subsequently cyclotetramerized in the presence of the corresponding metal chloride salts to obtain hexadeca-substituted metal {M = Cu(II) and Co(II)} phthalocyanines (b and c). The water-soluble phthalocyanines (d and e) were prepared by treating the newly synthesized complexes (b and c) with methyl iodide. Moreover, gold nanoparticles (1) and silver nanoparticles (2) were prepared, and their surfaces were modified with quaternary phthalocyanines (d and e).
View Article and Find Full Text PDFAnal Chem
September 2025
Institute of Digitized Medicine and Intelligent Technology, Wenzhou Medical University, Wenzhou 325000, P. R. China.
Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.
View Article and Find Full Text PDF