98%
921
2 minutes
20
Nonenzymatic post-translational modification (PTM) of proteins is a fundamental molecular process of aging. The combination of various modifications and their accumulation with age not only affects function, but leads to crosslinking and protein aggregation. In this study, aged human lens proteins were examined using HPLC-tandem mass spectrometry and a blind PTM search strategy. Multiple thioether modifications of Ser and Thr residues by glutathione (GSH) and its metabolites were unambiguously identified. Thirty-four of 36 sites identified on 15 proteins were found on known phosphorylation sites, supporting a mechanism involving dehydroalanine (DHA) and dehydrobutyrine (DHB) formation through β-elimination of phosphoric acid from phosphoserine and phosphothreonine with subsequent nucleophilic attack by GSH. In vitro incubations of phosphopeptides demonstrated that this process can occur spontaneously under physiological conditions. Evidence that this mechanism can also lead to protein-protein crosslinks within cells is provided where five crosslinked peptides were detected in a human cataractous lens. Nondisulfide crosslinks were identified for the first time in lens tissue between βB2- & βB2-, βA4- & βA3-, γS- & βB1-, and βA4- & βA4-crystallins and provide detailed structural information on in vivo crystallin complexes. These data suggest that phosphoserine and phosphothreonine residues represent susceptible sites for spontaneous breakdown in long-lived proteins and that DHA- and DHB-mediated protein crosslinking may be the source of the long-sought after nondisulfide protein aggregates believed to scatter light in cataractous lenses. Furthermore, this mechanism may be a common aging process that occurs in long-lived proteins of other tissues leading to protein aggregation diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114717 | PMC |
http://dx.doi.org/10.1111/acel.12164 | DOI Listing |
J Agric Food Chem
September 2025
Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
Soy protein remains a key component of plant-based food development, but its application is challenged by inherent allergenicity. Previous work identified that native amyloid-like protein aggregates in soy 7S globulin that resist gastrointestinal digestion and exhibit pronounced antigenicity. Herein, we demonstrate that protein deamidation significantly enhances proteolysis under an infant gastrointestinal digestion model, leading to ∼80 and 50% reductions in IgG- and IgE-binding capacities, respectively.
View Article and Find Full Text PDFSci Adv
September 2025
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China.
Insects, unlike vertebrates, use heteromeric complexes of odorant receptors and co-receptors for olfactory signal transduction. However, the secondary messengers involved in this process are largely unknown. Here, we use the olfactory signal transduction of the aggregation pheromone 4-vinylanisole (4VA) as a model to address this question.
View Article and Find Full Text PDFBioinformatics
September 2025
Computational Health Center, Helmholtz Center Munich, Neuherberg, 85764, Germany.
Motivation: Recent pandemics have revealed significant gaps in our understanding of viral pathogenesis, exposing an urgent need for methods to identify and prioritize key host proteins (host factors) as potential targets for antiviral treatments. De novo generation of experimental datasets is limited by their heterogeneity, and for looming future pandemics, may not be feasible due to limitations of experimental approaches.
Results: Here we present TransFactor, a computational framework for predicting and prioritizing candidate host factors using only protein sequence data.
Elife
September 2025
Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany.
The p53 transcription factor family consists of the three members p53, p63, and p73. Both p63 and p73 exist in different isoforms that are well characterized. Isoforms have also been identified for p53 and it has been proposed that they are responsible for increased cancer metastasis.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan 342037, India.
The dynamics of the aggregated light-harvesting complex (LHCII) associated with its antenna pigments can be crucial for a transition between light-harvesting and dissipative states, which is pivotal for nonphotochemical quenching (NPQ). To this end, aggregation of pigment-binding LHCII monomers and PsbS-associated trimers in neutral and low lumenal pH respectively, has been investigated when embedded in the plant thylakoid membranes, using coarse-grained molecular dynamics simulations. Both pigment-binding LHCII monomers and PsbS-associated trimers dynamically form and break dimers and higher-order aggregates in thylakoids within the simulation time.
View Article and Find Full Text PDF